На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Цементы

Информация:

Тип работы: контрольная работа. Добавлен: 13.11.2012. Сдан: 2012. Страниц: 28. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?1. Расширяющийся и безусадочные цементы, их свойства и применение
 
Водонепроницаемый расширяющийся цемент (ВРЦ)
 
Цемент ВРЦ - один из первых видов расширяющихся цементов - представляет собой быстросхватывающееся и быстротвердеющее вяжущее вещество. Водонепроницаемый расширяющийся цемент (ВРЦ) получают смешиванием или совместным помолом глиноземистого цемента (70%), полуводного гипса (20%) и молотого специально изготовленного высокоосновного гидроалюмината кальция 4СаО-А12О3-13Н2О (10%).
Глиноземистый цемент в составе ВРЦ обеспечивает твердение и неизменность объема цементного камня. Наиболее интенсивное расширение ВРЦ происходит в течение первых суток и продолжается до 2-3 суток.
ВРЦ имеет марку 500 через 28 суток, хотя уже через 6 ч твердения набирает прочность не менее 7,5 МПа. Отличается пониженной морозостойкостью и может применяться только при положительных температурах.
Водонепроницаемый расширяющийся цемент (ВРЦ) применяется для гидроизоляции различных, сооружений (резервуары, шлюзы, доки, бассейны, трубопроводы, туннели, фундаменты промышленных и гражданских зданий), в которых на время производства работ фильтрующая вода может быть отведена от торкретируемых поверхностей на период в 1-2 часа. Применение этого цемента допускается для сооружений, эксплоатируемых в условиях любого влажностного режима.
 
Водонепроницаемый безусадочный цемент (ВБЦ)
 
Водонепроницаемый безусадочный цемент (ВБЦ) - быстросхватывающееся и быстротвердеющее гидравлическое вяжущее вещество, получаемое путем тщательного смешивания глиноземистого цемента, полуводного гипса и гашеной извести. Сырьевая смесь содержит не менее 85% глиноземистого цемента. Соотношение между известью и гипсом может изменяться в пределах от 2,0 до 1,0.
Водонепроницаемый безусадочный цемент (ВБЦ) состоит из тех же компонентов, что и ВРЦ, но взятых в других соотношениях. Эти цементы быстро схватываются (начало схватывания — несколько минут, конец—• не позднее 5... 10 мин) и быстро твердеют, достигая к 3 сут 60...80 %-ной марочной прочности. Они образуют цементный камень высокой водонепроницаемости (выдерживает давление воды до 0,7 МПа), за что и получили второе название водонепроницаемых цементов.
Водонепроницаемый безусадочный цемент (ВБЦ) применяется для гидроизоляции подземных сооружений (туннели различного назначения), которые в течение всего периода строительства и эксплоатации находятся в условиях повышенной влажности воздуха (75% при t=20°). Ввиду того что этот цемент является безусадочным или слабо расширяющимся лишь во влажной среде, а в сухих условиях обнаруживает усадку, нужно избегать его применения для тех сооружений, где, хотя бы временно, может создаться сухой режим.
 
Гипсоглиноземистый расширяющийся цемент (ГГРЦ)
 
Гипсоглиноземистый расширяющийся цемент производят путем помола смеси высокоглиноземистого шлака и двухводного сернокислого кальция. ГГРЦ содержит не более 30% гипса и характеризуется началом схватывания не ранее 10 минут и концом схватывания не позднее 4 часов с момента начала затворения. Для замедления схватывания используют буру, уксусную кислоту, СДБ.
Сырьем гипсоглиноземистого цемента служат высокоглиноземистые шлаки моноалюминатного типа. При погружении в воду гипсоглиноземистого цемента происходит линейное расширение цемента, составляющее не менее 0,1% через 1 час после затворения и не более 0,6% через 3 суток твердения.
На начальном этапе твердения цемента ГГРЦ скорость роста прочности выше, чем у глиноземистого цемента, однако на следующих этапах рост прочности такой же, как у глиноземистого цемента. Деформационная способность ГГР-цемента незначительно больше такой деформационной способности глиноземистого цемента.
Первые 3-7 суток ГГРЦ должен расширяться в водной или сильно увлажненной среде. При твердении на воздухе цемент не только не расширяется, но даже дает усадку. Иногда используется комбинированный режим твердения, при котором первые 3 суток твердение поддерживается в водной среде, а в последующем твердение продолжается в воздушной среде. При такой процедуре сначала происходит расширение, а затем усадка с незначительным остаточным расширением около 0,15%.
Степень расширения цементного раствора зависит от относительного содержания цемента и воды в растворе. Если вяжущего становится меньше. Тепло-влажностная обработка изделий на основе ГГРЦ существенно ускоряет процесс твердения и уменьшает степень расширения. Растворы и бетоны на основе цемента ГГР обладают высокой атмосферо-устойчивостью и морозостойкостью. По экзотермии ГГР-цемент ближе к портландцементу высокого сорта, чем к глиноземистому цементу.
Стойкость цемента ГГР при солевой агрессии прямо зависит от стойкости глиноземистого цемента, на основе которого изготовлен ГГРЦ. Он устойчив в морской воде, пластовых сульфатных водах и растворах сульфата магния и натрия.
Гипсоглиноземистый расширяющийся цемент предназначается для изготовления безусадочных и расширяющихся водонепроницаемых растворов, бетонов и гидроизоляционных штукатурок; для заделки стыков сборных бетонных и железобетонных конструкций; для омоноличивания и усиления конструкций, подливки фундаментов и заделки фундаментных болтов; для зачеканки швов и раструбов водопроводных линий при рабочем давлении до 10 атм, создаваемом не ранее 24 ч с момента окончания зачеканки.
 

2. Свойства, виды стеновых  керамических изделий
 
Керамические изделия обладают различными свойствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжига—газовой средой, температурой и длительностью. Материал, из которого состоят керамические изделия, в технологии керамики именуют керамическим черепком.
Строительные керамические изделия классифицируют по структуре керамического черепка и по их конструктивному назначению в отдельных элементах зданий и сооружений. По структуре черепка различают изделия с пористым и со спекшимся черепком, а также изделия грубой и тонкой керамики. Пористыми в технологии керамики условно считают изделия, у которых водопоглощение черепка превышает 5%, обычно такой черепок пропускает воду. Спекшимся считают черепок с водопоглощением ниже 5%; как правило, он водонепроницаем.
У изделий грубой керамики черепок имеет в изломе зернистое строение (макронеоднородный). Большинство строительных керамических изделий — строительный кирпич, черепица, канализационные трубы и др. — являются изделиями грубой керамики.
У изделий тонкой керамики излом черепка имеет макрооднородное строение. Он может быть пористым, как, например, у фаянсовых облицовочных глазурованных плиток, и спекшимся (плитки для полов, кислотостойкий кирпич, фарфоровые изделия). Изделия со спекшимся черепком с водопоглощением ниже 1 % называют каменными керамическими. Если при этом черепок обладает еще и просвечиваемостью, то его называют фарфором.
По конструктивному назначению различают следующие группы керамических строительных материалов и изделий:
?     стеновые изделия—кирпич,
?     керамические камни и панели из них;
?     фасадные изделия—лицевой
?     кирпич, различного рода плитки; архитектура-художественные детали, наборные панно;
?     изделия для внутренней облицовки стен—глазурованные плитки и фасонные детали к ним (карнизы, уголки, пояски);
?     плитки для облицовки пола;
?     изделия для перекрытий (балки, панели, специальные камни);
?     кровельные изделия—черепица;
?     санитарно-строительные изделия—умывальные
?     столы, унитазы, ванны;
?     дорожные изделия—клинкерный кирпич;
?     изделия для подземных коммуникаций — канализационные и дренажные трубы;
?     теплоизоляционные изделия (керамзитокерамические панели, ячеистая керамика, диатомитовые и шамотные легковесные изделия);
?     заполнители бетонов (керамзит, аглопорит).
К керамическим материалам предъявляются различные требования соответственно тем воздействиям, которые они испытывают при использовании их в строительстве. В связи с этим необходимо знать основные свойства керамического материала и пути их регулирования в процессе изготовления различных керамических изделий.
Водопоглощение керамических материалов характеризует количественную величину их пористости и соответственно степень спекания, которая в свою очередь влияет на многие рабочие свойства изделий строительной керамики: морозостойкость, паро- и воздухопроницаемость, сцепление с раствором, загрязняемость и др. Диапазон этого показателя для изделий строительной керамики в зависимости от их вида и назначения довольно велик—от 1—30%. Предел прочности при сжатии Rcж керамических материалов зависит от их состава и структуры и уменьшается с увеличением размера образца. Наиболее важное значение Rсж имеет для изделий стеновой керамики, которые воспринимают большие нагрузки в зданиях и сооружениях. По этому показателю стеновые изделия маркируют, принимая за марку среднюю величину по результатам испытания пяти образцов.
Для изделий строительной керамики Rсж находится в пределах 7,5—70 МПа. Между прочностью керамического материала Rcж и его объемной массой g прослеживается зависимость, имеющая вид кубической параболы: а между прочностью пустотелых изделий R`сж и их объемной массой (брутто) g` отмечается зависимость вида квадратичной параболы.
Предел прочности при сжатии пустотелых изделий определяют с учетом их «рабочего» положения в стене. Общую разрушающую нагрузку делят на площадь брутто.
Предел прочности при изгибе керамических материалов Rиз зависит от тех же факторов, что и Rcж, с той лишь разницей, что здесь структура материала оказывает более резкое влияние на его сопротивляемость изгибу. Так, например, кирпич полусухого прессования имеет меньшую величину предела прочности при изгибе, чем кирпич пластического формования, изготовленный из тех же глин, хотя Rcж последнего ниже, чем у кирпича полусухого формования.
Предел прочности при изгибе регламентируется ГОСТами для кирпича, поскольку в стене он испытывает не только сжимающие, но и изгибающие нагрузки, вследствие неровностей своей поверхности. Этот показатель регламентируется и для некоторых других керамических изделий. По нему также судят об относительной прочности испытуемого материала и используют его как косвенный показатель для характеристики некоторых других свойств глинистого сырья и обожженных изделий (связность, связующая способность, термостойкость) Для керамических материалов Rиз находится в пределах 0,7—5 МП а.
Морозостойкостью называют способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и без значительного понижения прочности. Показателем морозостойкости является количество теплосмен, которое выдерживает материал без признаков разрушения.
Обстоятельные исследования по влиянию грануло-метрии пор на морозостойкость керамических материалов выявили следующие положения:
все поры в керамическом материале (с точки зрения морозостойкости) могут быть разделены на три категории: опасные, безопасные и резервные;
опасные поры заполняются водой при насыщении на холоду. В них она удерживается при извлечении материала из воды и замерзает при температуре от —15 до —20° С. Диаметр этих пор от 200 до 1 мк для глиняного кирпича пластического прессования, от 200 до 0,1 мк для глиняного кирпича полусухого прессования;
безопасные поры при насыщении на холоду водой не заполняются, либо заполнившая их вода не замерзает при указанных температурах. Это обычно мелкие поры. Заполняющая их вода становится по существу пристеночной адсорбированной влагой, имеющей свойства почти твердого тела и температуру замерзания существенно ниже (—20° С);
резервные поры при насыщении на холоду полностью заполняются водой, но из них при извлечении образца из насыщающего сосуда вода частично вытекает вследствие малых капиллярных сил. Это крупные поры диаметром более 200 мк.
Согласно этим исследованиям, керамический материал будет морозостойким, если в нем объем резервных пор достаточен для компенсации прироста объема замерзающей воды в опасных порах. Алгебраически это условие выражают (в %) формулой где С—структурная характеристика материала; Vр и Vоп– объем пор соответственно резервных (размером более 200 мк) и опасных. Экспериментальная кривая зависимости морозостойкости полнотелого кирпича от его структурной характеристики показывает, что при С<9% кирпич является неморозостойким. Пустотелые изделия морозостойки при С>6.
Морозостойкость определяет долговечность керамических материалов при их службе в условиях воздействия на них внешней среды. Поэтому требования морозостойкости регламентированы ГОСТами для стеновых фасадных, кровельных и некоторых других изделии строительной керамики. Зависимость морозостойкости глиняного кирпича от его структурной характеристики Теплопроводность керамических материалов зависит от их объемной массы, состава, вида и размера пор и резко возрастает с увеличением их влажности, так как теплопроводность воды [l=0,58 Вт/(м-град)] выше теплопроводности воздуха [l=0,029 Вт/(м-град)] в 20 раз. Замерзание воды в порах материала ведет к дальнейшему резкому возрастанию его теплопроводности, поскольку теплопроводность льда [l=2,33 Вт/(м-град)] больше теплопроводности абсолютно плотного керамического черепка l= =1,163 Вт/(м-град) примерно в 2 раза, больше теплопроводности воды в 4 раза и больше теплопроводности воздуха в 80 раз.
Паропроницаемость действующими Гостами и ТУ не регламентирована. Однако в некоторых случаях она влияет на долговечность строительных конструкций. Низкая паропроницаемость стеновых материалов может явиться причиной потения внутренней поверхности стен, особенно в зданиях с повышенной влажностью воздуха. По экспериментальным данным, коэффициент паропро-ницаемости плиток полусухого прессования с водопоглощением 8,5; 6,5 и 0,25% соответственно равен 0,155; 0,0525; 0,029 г/(м.ч.Па). Рис. 69. Схема возникновения очага замерзшей влаги в многослойной стене t — температура; (mп — коэффициент паро-прончцаемости; 1 — основной слой стены с высокой паропроницаемостью; 2—фасадная облицовка с низкой газопроницаемостью; 3 — слой замерзшей влаги; / — изменение mп по толщине стены; //—изменение I по толщине стены В многослойных стенах неодинаковая газопроницаемость отдельных слоев стены может вызвать накопление влаги в ее толще, последующее ее замерзание и отслаивание части стены. По этой причине не вполне надежна сквозная фасадная облицовка стен глазурованными плитками, обладающими низкой газопроницаемостью.
К стеновым керамическим изделиям относят глиняный строительный кирпич и керамические камни. Согласно ГОСТ 530—71, кирпич глиняный обыкновенный представляет собой искусственный камень, имеющий форму параллелепипеда размером 250Х120Х65 мм, изготовленный из глины с добавками или без них и обожженный. Допускается также изготовление полуторного кирпича толщиной 88 мм с технологическими пустотами и массой не более 4 кг. Практически его изготовляют очень редко.
Все керамические изделия конструктивного назначения, имеющие размеры больше кирпича, называют керамическими камнями. Кирпич является одним из наиболее древних искусственных строительных изделий. Его «возраст» составляет примерно 5000 лет, и до сего времени он продолжает сохранять значение одного из основных стеновых материалов. Его доля в общем балансе стеновых материалов составляет около 40%. Рис. 70. Виды керамических стеновых изделий
?     обыкновенный кирпич;
?     дырчатый кирпич с круглыми пустотами;
?     щелевой камень;
?     готовый камень НИИСтройкерамики с ромбовидными пустотами для панелей;
?     щелевой камень ВНИИСТРОМа для панелей.
Основным признаком полусухого прессования керамических изделий является формование их из порошков путем компрессионного прессования под значительным Удельным давлением 15—40 МПа. Технологический процесс изготовления изделий этим способом включает следующие группы операций: карьерные работы, приготовление пресс-порошка, прессование, сушку и обжиг изделий.
Карьерные работы не имеют в этом случае какой-либо специфики и выполняются соответственно горно-эксплуатационным условиям месторождения глин.
Приготовление пресс-порошка.
Керамическими пресс-порошками называют высококонцентрированные (мало влажные) дисперсные глинистые системы, не обладающие связностью. Отсутствие связности обусловливавливает наиболее характерное свойство порошков—их сыпучесть, т. е. псевдотекучесть в исходном состоянии. Ее характеризуют скоростью истечения порошка под действием собственной массы через отверстие определенного диаметра. Глиняные порошки должны иметь заданный зерновой (грапулометрический) состав и влажность, должны обладать однородной пофракционной влажностью и содержать минимальное количество пылевидной фракции. Все эти характеристики влияют на прессусмость порошка — его способность к максимальному уплотнению при минимальном давлении с образованием при этом изделий, обладающих однородной плотностью, минимальным упругим расширением и отсутствием трещин расслаивания.
Керамические порошки готовят сушилыю-помольным и шликерным способами.
При сушильно-помольном способе глину подвергают последовательно грубому дроблению, сушке, помолу просеву и увлажнению. Дробят глину на дезинтеграторных вальцах, а сушат в сушильных барабанах прямотоком, так как при противотоке возникает опасность сильного перегрева глины, частичной ее дегидратации, и большой потери пластических свойств. Температура газов t1, поступающих в барабан, составляет обычно 600—800°С. Снижение t1 обеспечивает более однородную пофракционную влажность, но уменьшает производительность барабана. Повышение t1 сверх указанного предела нецелесообразно, так как оно приводит к дегидратации мелкой фракции глины и обусловливает быстрый выход из строя входной секции барабана. Нормальная температура отходящих газов t2 должна быть 110—120 °С. Резкое повышение t2 свидетельствует о перересушке глины. Температура глины, выгружаемой из сушильного барабана, составляет 60—80 °С. Конечная влажность 9—11%.
При прохождении глины через барабан изменяется ее гранулометрический состав. Мелкие фракции, быстро высыхая, истираются до пылевидного состояния, а крупные куски, распариваясь, слипаются и окатываются в крупные комья. Это обусловливает большую влажностную неоднородность высушенной глины, затрудняющую работу помольных машин. Так, при средней влажности 8,5—12% влажность наиболее крупных кусков достигает 15,5—19%. К тому же и в пределах одного куска отмечается значительный перепад влажности. Некоторое повышение равномерности сушки достигается устройством цепных завес в сушильных барабанах, которые частично измельчают глину, создавая тем самым условия для более равномерной ее сушки. Но даже и с наличием цепных завес сушильный барабан нельзя считать достаточно совершенным в технологическом отношении агрегатом.
Для помола глины в производстве кирпича применяют корзинчатые дезинтеграторы. Они работают устойчиво при влажности глины не выше 10%. При более высоком влажности глина налипает па кожух и на пальцы дезинтеграторов. При наличии в глине каменистых включений пальцы корзин быстро изнашиваются и их необходимо менять через 200—300 ч работы.
Тонина помола зависит от частоты вращения корзин дезинтегратора, расстояния между пальцами и влажности глины. Выход мелких фракций возрастает с увеличением частоты вращения корзин и уменьшением расстояния между пальцами. С повышением влажности глины возрастает количество крупных фракций. Так, например, при влажности 10% сумма крупных фракций (остаток на сите 25 отв. на 1 см2) составляет 96%, а при влажности 6% — всего лишь 66%. Из дезинтеграторов получают рыхлый порошок малой объемной массы, что затрудняет прессование из него изделий.
Просеивают глину для отделения крупных зерен порошка. Для этого используют струнные сита, барабанные грохоты (бураты), качающиеся и вибрационные сита. На струнных ситах можно отделять только очень крупные куски глины, так как расстояние между сильно натянутыми струнами значительно изменяется вследствие их изгибания.
При подготовке пресс-порошков не всегда удается после помола получить порошок с влажностью, необходимой и достаточной для прессования. Чтобы обеспечить производительную работу помольных машин и необходимую тонину помола, приходится иногда сушить и молоть глин у при влажности несколько ниже прессовочной, а затем порошок вновь увлажнять.
Такое увлажнение осуществляют распылением воды в глиномешалках или паром в специальных аппаратах. Основное требование, которое предъявляют к увлажняющему аппарату, сводится к тому, чтобы при увлажнении порошка глины не образовались комочки переувлажненного материала, так называемой «изюм». Для этого воду подают в тонко распыленном состоянии, а весь материал при этом перемешивают. Хорошие результаты получаются при увлажнении глины во взвешенном состоянии, т. е. в момент, когда она выходит из бункера в смеситель. При увлажнении глиняного порошка паром качество кирпича намного улучшается: не появляются трещины расслаивания, возрастают прочность и морозостойкость.
Во всех возможных случаях необходимо избегать повторного увлажнения глиняного порошка, так как добиться при этом равномерной влажности его весьма трудно по следующим причинам: в высушенном порошке крупные зерна являются влажными, а мелкие—более сухими. Влажная поверхность имеет всегда более низкую температуру, чем сухая. Поэтому пар в первую очередь конденсируется на более холодной влажной поверхности крупных кусочков глины. Мелкая ее фракция, наиболее сухая, или совсем не увлажняется, или увлажняется в меньшей мере, в результате чего пофракционная влажность порошка не только не выравнивается, но иногда даже возрастает. Для выравнивания влажности подвергают порошок вылеживанию в бункерах. Однако этот процесс протекает довольно медленно. В течение суток практически выравнивание влажности достигается в пределах одного зерна, а между отдельными зернами оно еще не наступает вследствие относительно небольшой контактной поверхности между ними. Кроме того, увлажнение поверхности зерен порошка снижает его сыпучесть, что в последующем затрудняет его хранение в бункерах и транспортирование. Поэтому процесс вылеживания порошка следует считать полезным, улучшающим его прессовочные свойства, но нужно стремиться осуществлять этот процесс по возможности без предварительного увлажнения порошка. Оптимальная влажность порошка зависит от приложенного прессового давления. Экстремум на кривой «объемная масса прессовки — влажность» соответствует оптимальной влажности при данном давлении. Пониженная (против оптимальной) влажность обусловит сухой контакт частиц порошка, повышенное внутреннее трение и пониженную плотность прессовки, а превышение оптимальной влажности—образование водных пленок между прессуемыми частицами и исключит их непосредственное контактирование, что в конечном счете также понизит плотность прессовки.
При шликерном способе подготовки пресс-порошка глину в глиноболтушках распускают горячей водой в шликер влажностью 40—45%. Затем его под давлением 0,25 МПа накачивают для отделения каменистых включений в дуговые сита, откуда очищенным он сливается в открытые шламбассейны вместимостью 2500 или 6000 м3, оборудованные крановыми мешалками. В них также поступает для барботажа компрессорный воздух. Из шламбассейна шликер насосом подают в распылительную сушилку, откуда порошок с влажностью 10% поступает через контрольное сито в расходные бункера.
Шликерный способ имеет большие преимущества перед сушильно-помольным. При нем в одном агрегате — распылительной сушилке — совмещаются процессы сушки и грануляции глины, резко улучшаются условия производственного комфорта, процесс может быть автоматизирован.
Пресс-порошок, полученный в распылительных сушилках, обладает большой влажностной однородностью, практически не содержит пылевидной фракции, по гранулометрическому составу приближается к монофракционному, из него при прессовании легко удаляется воздух, вследствие чего порошок равномерно пропрессовывается при более низких давлениях. Свойства его стабильны благодаря полной автоматизации процесса. Новые заводы полусухого прессования кирпича строятся только на основе шликерного способа подготовки пресс-порошка.
Прессование изделий из керамических порошков.
Теория полусухого прессования изучает закономерности, определяющие свойства спрессованного сырца (прессовок) в зависимости от свойств пресс-порошка и условий его прессования. Керамические порошки представляют собой трехфазную систему, состоящую из твердой минеральной части, жидкой фазы — воды и воздуха. Для получения высокоплотного спрессованного полуфабриката из пластичных масс целесообразно использовать порошки типа монофракционных с выбором конечного давления, обеспечивающего полное устранение расположенных между частицами свободных промежутков за счет пластической деформации частиц.
Начало прессования керамического порошка сопровождается его уплотнением за счет смещения частиц относительно друг друга и их сближения. Это является первой стадией уплотнения. При этом происходит частичное удаление воздуха из системы.
Следующая (вторая) стадия уплотнения характеризуется пластической необратимой деформацией частиц. При этом увеличивается контактная поверхность между частицами.
Одновременно с этим уплотнение каждой элементарной частицы сопровождается выжиманием влаги из ее глубинных слоев на контактную поверхность частицы. Оба эти фактора обусловливают возрастание сцепления между частицами. Вода вместе с содержащимися в ней глинистыми коллоидами цементирует крупные частицы прессовки, а с увеличением контактной поверхности возрастает эффект такой цементации. В этой стадии уплотнения может иметь место защемление и упругое сжатие воздуха, который не успел удалиться из порошка.
В третьей стадии уплотнения наступает упругая деформация частиц. Такие деформации наиболее вероятны для тонких удлиненных частиц в виде игл и пластинок, которые могут изгибаться по схеме зажатой консоли или балки, опирающейся на две опоры.
Последняя стадия уплотнения сопровождается хрупким разрушением частиц, при котором прессовка получает наибольшее уплотнение и наибольшее сцепление вследствие сильного дальнейшего развития контактной поверхности. Для осуществления хрупких деформаций требуется очень большое давление, которое при полусухом прессовании большинства керамических изделий практически не достигается .
После прекращения действия прессующего усилия и освобождения изделия из формы происходит его упругое расширение, достигающее в отдельных случаях 8%. Упругое расширение не дает возможности получать прессовки с максимальной плотностью и является причиной образования других пороков изделий, спрессованных из порошков.
Причинами упругого расширения могут быть обратимые деформации твердых частиц, расширение запрессованного воздуха, а также адсорбционное расклинивание контактов влагой, выжатой при прессовании из контактных поверхностей в более крупные поры.
Суммарный эффект уплотнения характеризуется коэффициентом сжатия Ксж: где Н—высота засыпки порошка в форму пресса; h—высота полученной прессовки.
Разницу между высотой засыпанного в форму порошка и высотой полученной прессовки называют «осадкой».
Зависимость коэффициента сжатия от величины прессового давления выражают уравнением прессования. Для глиняных грубозернистых порошков наиболее удовлетворительное совпадение с опытом дает уравнение вида где Р—величина прессового давления; а и n—константы, определяемые экспериментом.
Графическую зависимость между осадкой и удельным давлением прессования изображают в виде компрессионной кривой. Она является основной характеристикой деформативных свойств (прессуемости) порошка.
По мере возрастания давления осадка сначала интенсивно развивается, затем начинает затухать и при достижении некоторого давления, характерного для каждого порошка с данными свойствами, почти полностью прекращается. Это указывает на то, что для каждого порошка с присущими ему прессовочными свойствами существует определенное давление, превышать которое не имеет смысла, так как за его пределами дальнейшего уплотнения прессовки почти не происходит.
Прессовое давление, приложенное к штампу, затухает в направлении толщины изделия. Закон распределения давления по толщине прессуемого изделия выражается уравнением где РН– давление на расстоянии Н от пуансона; Р0– давление у пуансона; R–гидравлический радиус прессовки
Перепады давления и плотности по толщине прессовки могут быть снижены пластификацией порошков повышением влажности (технологической связки), введением ПАВ, смазывающих веществ и подогревом пресс-формы. Эти же мероприятия снижают неравноплотность в горизонтальных направлениях. На равноплотность прессовки очень большое влияние оказывает режим прессования. По направленности прессовых усилий различают прессование одностороннее и двусторонние, по кратности их приближения– однократное и многократное прессование, по интенсивности приложения—ударное и плавное прессование.
Двухстороннее прессование уменьшает степень неравноплотности прессовки, поскольку путь необходимого перемещения штампа, т. е. величина Н в уравнениях, сокращается вдвое. Поэтому современные прессы изготовляют с двухсторонним прессованием даже для формования сравнительно тонких изделий.
При многократном (ступенчатом) прессовании чередуются между собой стадии нагрузки, когда штамп давит на порошок, со стадиями разгрузки, когда штамп несколько приподнимается и прессовка освобождается от прессующего давления. Факторы, определяющие качество прессовки, в значительной степени зависят от длительности приложения прессующей нагрузки. Наихудшие результаты получаются при ударном прессовании, наилучшие—при плавном приложении нагрузки. При этом увеличивается плотность прессовки, возрастает ее равноплотность, снижается упругое последействие и воздух наиболее полно удаляется из прессуемого порошка.
Для изделий, спрессованных из порошков, характерными являются так называемые трещины расслаивания. Они возникают на боковых поверхностях прессовки, перпендикулярно направлению прессующего усилия, и выводят изделия в брак. В производственном обиходе их возникновение объясняют обычно трещины. Трещины расслаивания в изделиях полусухого прессования прессовкой изделия, что указывает на чрезмерно большое прессовое давление, которое якобы и является причиной их возникновения. Однако в действительности механизм их возникновения гораздо сложней. Непосредственной, ближайшей причиной возникновения трещин расслаивания является упругое расширение прессовки. Расширение является деформацией, а всякая деформация происходит в результате действия каких-то сил. Природа этих сил, возникающих в спрессованном изделии и вызывающих его упругое расширение, объясняется отдельными авторами по-разному. Чаще всего их возникновение объясняют упругим расширением запрессованного воздуха (первый фактор) и упругим сжатием самой формы (второй фактор), в которой прессуется изделие. Оба эти фактора, несомненно, играют определенную роль в возникновении трещин расслаивания. Но, кроме того, в работе серией оригинальных опытов было показано, что в действительности отдельные участки прессуемого изделия при одном и том же коэффициенте сжатия и при одном и том же общем прессовом давлении получают неодинако
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.