На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Практическое применение производной

Информация:

Тип работы: курсовая работа. Добавлен: 17.11.2012. Сдан: 2012. Страниц: 9. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?Южно-Сахалинский Государственный Университет
Кафедра математики
 
 
 
 
 
 
 
Курсовая работа
Тема: Практическое применение производной
 
 
 
 
 
 
 
 
 
Автор: Меркулов М. Ю.
Курс: 3
Преподаватель: Лихачева О. Н.
Оценка:
Южно-Сахалинск
2002г
Введение
 
В данной работе я рассмотрю применения производной в различных науках и отраслях. Работа разбита на главы, в каждой из которых рассматривается одна из сторон дифференциального исчисления (геометрический, физический смысл и т. д.)
 
1. Понятие производной
 
1-1. Исторические сведения
 
Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач:
1) о разыскании касательной к произвольной линии
2) о разыскании скорости при произвольном законе движения
Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда.
В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли  Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.
 
1-2. Понятие производной
 
Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a; b), и пусть х0 - произвольная точка этого промежутка
Дадим аргументу x приращение ?x, тогда функция y = f(x) получит приращение ?y = f(x + ?x) - f(x). Предел, к которому стремится отношение ?y / ?x при ?x > 0, называется производной от функции f(x).
y'(x)=
 
1-3. Правила дифференцирования и таблица производных
 
C' = 0
(xn) = nxn-1
(sin x)' = cos x
x' = 1
(1 / x)' = -1 / x2
(cos x)' = -sin x
(Cu)'=Cu'
(vx)' = 1 / 2vx
(tg x)' = 1 / cos2 x
(uv)' = u'v + uv'
(ax)' = ax ln x
(ctg x)' = 1 / sin2 x
(u / v)'=(u'v - uv') / v2
(ex)' = ex
(arcsin x)' = 1 / v (1- x2)
 
(logax)' = (logae) / x
(arccos x)' = -1 / v (1- x2)
 
(ln x)' = 1 / x
(arctg x)' = 1 / v (1+ x2)
 
 
(arcctg x)' = -1 / v (1+ x2)
 
 

2. Геометрический смысл производной
 
2-1. Касательная к кривой
 
Пусть имеем кривую и на ней фиксированную точку M и точку N. Касательной к точке M называется прямая, положение которой стремится занять хорда MN, если точку N неограниченно приближать по кривой к M.
 
Рассмотрим функцию f(x) и соответствующую этой функции кривую y = f(x). При некотором значении x функция имеет значение y = f(x). Этим значениям на кривой соответствует точка M(x0, y0). Введем новый аргумент x0 + ?x, его значению соответствует значение функции  y0 + ?y = f(x0 + ?x). Соответствующая точка - N(x0 + ?x, y0 + ?y). Проведем секущую MN и обозначим ? угол, образованный секущей с положительным направлением оси Ox. Из рисунка видно, что ?y / ?x = tg ?. Если теперь ?x будет приближаться к 0, то точка N будет перемещаться вдоль кривой , секущая MN - поворачиваться вокруг точки M, а угол ? - меняться. Если при ?x > 0 угол ? стремится к некоторому ?, то прямая, проходящая через M и составляющая с положительным направлением оси абсцисс угол ?, будет искомой касательной. При этом, ее угловой коэффициент:

То есть, значение производной f '(x) при данном значении аргумента x равно тангенсу угла, образованного с положительным направлением оси Ox касательной к графику функции f(x) в точке M(x, f(x)).
 
Касательная к пространственной линии имеет определение, аналогичное определению касательной к плоской кривой. В этом случае, если функция задана уравнением z = f(x, y), угловые коэффициенты при осях OX и OY будут равны частным производным f по x и y.
 
2-2. Касательная плоскость к поверхности
 
Касательной плоскостью к поверхности в точке M называется плоскость, содержащая касательные ко всем пространственным кривым поверхности, проходящим через M - точку касания.
Возьмем поверхность, заданную уравнением F(x, y, z) = 0 и какую-либо обыкновенную точку M(x0, y0, z0) на ней. Рассмотрим на поверхности некоторую кривую L, проходящую через M. Пусть кривая задана уравнениями
x = ?(t); y = ?(t); z = ?(t).
Подставим в уравнение поверхности эти выражения. Уравнение превратится в тождество, т. к. кривая целиком лежит на поверхности. Используя свойство инвариантности формы дифференциала, продифференцируем полученное уравнение по t:

Уравнения касательной  к кривой L в точке M имеют вид:

Т. к. разности x - x0, y - y0, z - z0 пропорциональны соответствующим дифференциалам, то окончательное уравнение плоскости выглядит так:
F'x(x - x0) + F'y(y - y0) + F'z(z - z0)=0
и для частного случая z = f(x, y):
Z - z0 = F'x(x - x0) + F'y(y - y0)
Пример: Найти уравнение касательной плоскости в точке (2a; a; 1,5a) гиперболического параболоида

Решение:
Z'x = x / a = 2; Z'y = -y / a = -1
Уравнение искомой плоскости:
Z - 1.5a = 2(x - 2a) - (Y - a) или Z = 2x - y - 1.5a
 
3. Использование производной в физике
 
3-1. Скорость материальной точки
 
Пусть зависимость пути s от времени t в данном прямолинейном движении материальной точки выражается уравнением s = f(t) и t0 -некоторый момент времени. Рассмотрим другой момент времени t, обозначим ?t = t - t0 и вычислим приращение пути: ?s = f(t0 + ?t) - f(t0). Отношение ?s / ?t называют средней скоростью движения за время ?t, протекшее от исходного момента t0. Скоростью называют предел этого отношения при ?t > 0.
 
Среднее ускорение неравномерного движения в интервале (t; t + ?t) - это величина <a>=?v / ?t. Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения:

То есть первая производная по времени (v'(t)).
 
Пример: Зависимость пройденного телом пути от времени задается уравнением s = A + Bt + Ct2 +Dt3 (C = 0,1 м/с, D = 0,03 м/с2). Определить время после начала движения, через которое ускорение тела будет равно 2 м/с2.
 
Решение:
v(t) = s'(t) = B + 2Ct + 3Dt2;    a(t) = v'(t) = 2C + 6Dt = 0,2 + 0,18t = 2;
1,8 =  0,18t;    t = 10 c
 
3-2. Теплоемкость вещества при данной температуре
 
Для повышения различных температур T на одно и то же значение, равное T1 - T, на 1 кг. данного вещества необходимо разное количество теплоты Q1 - Q, причем отношение

для данного вещества не является постоянным. Таким образом, для данного вещества количество теплоты Q есть нелинейная функция температуры T: Q = f(T). Тогда ?Q = f(t + ?T) - f(T). Отношение

называется средней теплоемкостью на отрезке [T; T + ?T], а предел этого выражения при ?T > 0 называется теплоемкостью данного вещества при температуре T.
 
3-3. Мощность
 
Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:.
 
4. Дифференциальное исчисление в экономике
 
4-1. Исследование функций
 
Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.
По теореме Ферма, если точка является экстремумом функции, то производная в ней либо не существует, либо равна 0. Тип экстремума можно определить по одному из достаточных условий экстремума:
1) Пусть функция f(x) дифференцируема в некоторой окрестности точки x0. Если производная f '(x) при переходе через точку x0 меняет знак с + на -, то x0 - точка максимума, если с - на +, то x0 - точка минимума, если не меняет знак, то в этой точке нет экстремума.
2) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x0, причем f '(x0) = 0, f ''(x0) ? 0, то в точке x0 функция f(x0) имеет максимум, если f ''(x0) < 0 и минимум, если f ''(x0) > 0.
Кроме того, вторая производная характеризует выпуклость функции (график функции называется выпуклым вверх [вниз] на интервале (a, b), если он на этом интервале расположен не выше [не ниже] любой своей касательной).
 
Пример: выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью:
?(q) = R(q) - C(q) = q2 - 8q + 10
Решение:
?'(q) = R'(q) - C'(q) = 2q - 8 = 0 > qextr = 4
При q < qextr = 4 > ?'(q) < 0 и прибыль убывает
При q > qextr = 4 > ?'(q) > 0 и прибыль возрастает
При q = 4 прибыль принимает минимальное значение.
Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений и / или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.
 
4-2. Эластичность спроса
 
Эластичностью функции f(x) в точке x0 называют предел

Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса ED - это величина, характеризующая то, как спрос реагирует на изменение цены. Если ¦ED¦>1, то спрос называется эластичным, если ¦ED¦<1, то неэластичным. В случае ED=0 спрос называется совершенно неэластичным, т. е. изменение цены не приводит ни к какому изменению спроса. Напротив, если самое малое снижение цены побуждает покупателя увеличить покупки от 0 до предела своих возможностей, говорят, что спрос является совершенно эластичным. В зависимости от текущей эластичности спроса, предприниматель принимает решения о снижении или повышении цен на продукцию.
 
4-3. Предельный анализ
 
Важный раздел методов дифференциального исчисления, используемых в экономике - методы предельного анализа, т. е. совокупность приемов исследования изменяющихся величин затрат или результатов при изменениях объемов производства, потребления и т. п. на основе анализа их предельных значений. Предельный показатель (показатели) функции - это ее производная (в случае функции одной переменной) или частные производные (в случае функции нескольких переменных)
В экономике часто используются средние величины: средняя производительность труда, средние издержки, средний доход, средняя прибыль и т. д. Но часто требуется узнать, на какую величину вырастет результат, если будут увеличены затраты или наоборот, насколько уменьшится результат, если затраты сократятся. С помощью средних величин ответ на этот вопрос получить невозможно. В подобных задачах требуется определить предел отношения приростов результата и затрат, т. е. найти предельный эффект. Следовательно, для их решения необходимо применение методов дифференциального исчисление.
 
5. Производная в приближенных вычислениях
 
5-1. Интерполяция
 
Интерполяцией называется приближенное вычисление значений функции по нескольким данным ее значениям. Интерполяция широко используется в картографии, геологии, экономике и других науках. Самым простым вариантом интерполяции является форма Лагранжа, но когда узловых точек много и интервалы между ними велики, либо требуется получить функцию, кривизна которой минимальна то прибегают к сплайн-интерполяции, дающей бoльшую точность.
 
Пусть Kn - система узловых точек a = x0 < x1 <…< xn = b. Функция  Sk(x) называется сплайн-функцией Sk(x) степени k?0 на Kn, если
а) Sk(x) є Ck-1([a, b])
б) Sk(x) - многочлен степени не большей k
 
Сплайн-функция Sk(x) є Sk(Kn) называется интерполирующей сплайн-функцией, если Sk(xj) = f(xj) для j = 0,1,…,n
 
В приложениях часто бывает достаточно выбрать k=3 и применить т. н. кубическую интерполяцию.

Т. к. s(x) на каждом частичном интервале есть многочлен третьей степени, то для x є [xj-1 ,xj]


Здесь s2j, cj1, cj0 неизвестны для j = 1, 2, …, n
Последние исключаются в силу требования s(xj) = yj:
Дифференцируя эту функцию и учитывая, что s'(x) на всем интервале и, следовательно, в частности, в узлах должна быть непрерывна, окончательно получаем систему уравнений:

относительно n+1 неизвестных s20, s21,…, s2n. Для однозначного их определения в зависимости от задачи добавляются еще два уравнения:
 
Нормальный случай(N):

 
Периодический случай(P) (т. е. f(x+(xn-x0))=f(x)):

 
Заданное сглаживание на границах:

 
Пример: сплайн-интерполяция функции f(x)=sin x, n=4.
Функция периодическая, поэтому используем случай P.
j
xj
yj
hj
yj-yj-1
0
0
0
?/2
1
1
?/2
1
?/2
-1
2
?
0
?/2
-1
3
3?/2
-1
?/2
1
4
2?
0
 
 
 

 
Сплайн-функция получается такая:
 

 
5-2. Формула Тейлора
 
Разложение функций в бесконечные ряды позволяет получить значение функции в данной точке с любой точностью. Этот прием широко используется в программировании и других дисциплинах
 
Говорят, что функция разлагается на данном  промежутке в степенной ряд, если существует такой степенной ряд a0 + a1(x - a) + a2(x - a)2 + … + an(x - a)n + …, который на этом промежутке сходится к данной функции. Можно доказать, что это разложение единственно:





Пусть функция f(x) бесконечно дифференцируема в точке a. Степенной ряд вида

называется рядом Тейлора для функции f(x), записанным по степеням разности (x - a). Вообще, чтобы ряд Тейлора сходился к f(x) необходимо и достаточно, чтобы остаточный член ряда стремился к 0. При a = 0 ряд Тейлора обычно называют рядом Маклорена.
 
С помощью ряда Маклорена можно получить простые разложения элементарных функций:





 
 
5-3. Приближенные вычисления
 
Часто бывает, что функцию f(x) и ее производную легко вычислить при x = a, а для значений x, близких к a, непосредственное вычисление функции затруднит
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.