На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Элементы генной инженерии

Информация:

Тип работы: реферат. Добавлен: 17.11.2012. Сдан: 2012. Страниц: 11. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?20
 

 

Содержание

 

 

 
 
 
 
1.
Введение
Стр. 2
2.
Что такое ген
Стр. 3
3.
Открытие двойной структуры молекулы ДНК и матричного синтеза
Стр. 3
4.
Генетическая инженерия
Стр. 4
5.
Достижения и проблемы современной генетики
Стр. 5
6.
Создание трансгенных растений
Стр. 5
7.
Генные вакцины
Стр. 8
8.
Перспективы клонирования животных и человека
Стр. 12
9.
Геном человека
Стр. 14
10.
Другие генные открытия
Стр. 16
11.
Заключение
Стр. 19
12.
Список литературы
Стр. 20

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Введение.

Генная инженерия -  направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.
В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты, осуществлять in vitro синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования.
 
.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Что такое ген.
 
Любое растение или животное имеет тысячи различных признаков. Например, у растений: цвет листьев, величина семян, наличие в плодах определённого витамина и тому подобное. За наличие каждого конкретного признака отвечает определённый ген. Ген - от греческого genos, и переводится как "род", "происхождение". Ген представляет собой маленький отрезочек молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген — один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.
Ген и генерирует или порождает определённый признак растения или животного. Если убрать ген, отвечающий за появление определённого признака, то исчезнет и сам признак. И, наоборот, если добавить, например, растению новый ген, то у растения появится и новый признак. Изменённое же растение может теперь именоваться мутантом (с лат. - изменённый).
Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.
 

Открытие двойной структуры ДНК и матричного синтеза.

 
Начальные работы американских учёных Уотсона и Крика были произведены в 1953 году. Они дали возможность развиваться генной инженерии в качестве самостоятельного раздела науки. Эти открытия заключены в следующем:
Была открыта двойная структура ДНК и постулирован её матричный синтез. Двойная спираль ДНК при репликации разделится и вдоль нити ДНК, специальные ферменты-полимеры, собирают точные копии материнской ДНК, таким образом в клетке перед делением две совершенно одинаковые молекулы ДНК, одна из которых после деления клетки попадает в дочернюю клетку. Таким образом дочерняя клетка несет ту же самую информацию, что и материнская, следовательно выполняет те же самые функции. Итак, в клетках живого организма возможен особый тип реакции – матричный синтез. Одна молекула – матрица, а вторая строится по её программе. репликация ДНК синтез всех видов РНК и сборка молекул белка, в соответствии со структурой и-РНК – это все варианты матричного синтеза, который происходит всегда при участии нуклеиновых кислот.
По тому же самому механизму осуществляется сборка РНК, только не двух спиралей, а одной. Этот процесс получил название – транскрипция. Поток информации в клетке обеспечивает реакции матричного синтеза: репликация ДНК(необходима для передачи наследственной информации дочерним клеткам), транскрипция(синтез и-РНК в ядре клетки) и трансляция(сборка белковой цепи на и-РНК при помощи рибосомы).
 
 
Генетическая инженерия
 
Генетическая инженерия возникла  в 1972 году, в Станфордском университете, в США. Тогда  лаборатория  П.  Берга получила первую рекомбинатную (гибридную)  молекулу ДНК или (рекДНК). Она соединяла  в себе фрагменты ДНК фага лямбда, кишечной палочки и обезьяньего вируса SV40. С этого момента формально и взяла старт генная инженерия. Вживляя ген, "одолженный" у одного растения (или животного) другому, биотехнологи добиваются появления новых видов с определенными заданными свойствами. Гибридная  ДНК  имеет  вид  кольца.  Она
содержит ген (или гены) и вектор. Вектор - это фрагмент ДНК,  обеспечивающий размножение  гибридной  ДНК  и  синтез   конечных   продуктов   деятельности генетической системы - белков. Большая часть  векторов  получена  на  основе фага лямбда, из плазмид, вирусов SV40,  полиомы,  дрожжей  и  др.  бактерий. Синтез белков происходит клетке-хозяине. Наиболее часто в  качестве  клетки-хозяина используют  кишечную  палочку,  однако  применяют  и  др.  бактерии, дрожжи, животные или растительные клетки.  Система  вектор-хозяин  не  может быть произвольной:  вектор  подгоняется  к  клетке-хозяину.  Выбор  вектора
зависит от видовой специфичности и целей исследования. Ключевое  значение  в конструировании гибридной ДНК несут два фермента.  Первый  -  рестриктаза  - рассекает молекулу ДНК на фрагменты по строго определенным местам. И  второй - ДНК-лигазы - сшивают фрагменты ДНК в единое целое. Только после  выделения таких  ферментов  создание   искусственных   генетических   структур   стало технически выполнимой задачей.
Этапы генного  синтеза.  Гены,  подлежащие  клонированию,  могут  быть получены  в  составе  фрагментов  путем  механического  или   рестриктазного дробления тотальной ДНК. Но структурные гены, как правило,  приходится  либо синтезировать химико-биологическим путем, либо  получать  в  виде  ДНК-копии информационных  РНК,  соответствующих  избранному  гену.  Структурные   гены содержат только кодированную  запись  конечного  продукта  (белка,  РНК),  и полностью   лишены   регуляторных   участков.   И   поэтому   не    способны
функционировать в клетке-хозяине.
      При получении рекДНК образуется  чаще  всего  несколько  структур,  из
которых только одна является нужной. Поэтому обязательный  этап  составляет селекция и молекулярное клонирование рекДНК, введенной  путем  трансформации в  клетку-хозяина.  Существует  3  пути   селекции   рекДНК:   генетический, иммунохимический и гибризационный с мечеными ДНК и РНК.
 
Достижения и проблемы современной генетики
 
На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина. Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.
 
Создание трансгенных растений
 
Отсчёт истории генетической инженерии растений принято вести с 1982 года, когда впервые были получены генетически трансформированные растения. Метод трансформации основывается на природной способности бактерий Agrobacterium tumefaciens генетически модифицировать растения. Реконструированные штаммы Agrobactrium, содержащие неонкогенные варианты Ti-плазмид и обладающие повышенной вирулентностью, стали основой одного из наболее популярных методов трансформации. Первоначально трансформация применялась для генно-инженерных двудольных растений, однако работы последних лет свидетельствуют, что этот метод эффективен и в отношении кукурузы, риса, пшеницы. Другим широко распространённым методом трансформации, является технология, основанная на обстреле ткани микрочастицами золота (или других тяжелых металлов), покрытыми раствором ДНК. Все выращиваемые ныне коммерческие сорта получены с помощью названных выше двух методов.   
Современный арсенал методов трансформации, однако, довольно обширен и включает такие подходы, как введение ДНК в голые клетки (протопласты), электропорация клеток, микроинъекций ДНК в клетки, прокалывание клеток путём встряхивания их в суспензии микроигл, опосредованная вирусами инфекции и так далее.
Генетические изменённые растения с устойчивостью к различным классам гербицидов в настоящее время являются наиболее успешным биотехнологическим продуктом. Дело в том, что биотехнология позволила совершить такой прыжок, так как оказалось возможным генетически изменять устойчивость растений к тем или иным гербицидам либо путем введения генов, кодирующих белки, нечувствительные к данному классу гербицидов, либо за счет введения генов, обеспечивающих ускоренный метаболизм гербицидов растений. К настоящему времени клонированы гены, кодирующие нечувствительные к действию гербицидов ферменты-мишени, что дало возможность получать трансгенные растения, устойчивые к таким гербицидам, как глифостат и хлорсульфуроновым, и имидазолиноновым гербицидом. Изолированы также гены,  которые кодируют ферменты деградации некоторых гербицидов, что позволило получить трансгенные растения устойчивые к фосфинотрицину и далапону. В 1997  году устойчивая к Roundup соя, распространяемая компанией "As Grow", была признана в США сельскохозяйственным продуктом года.
Ученые пошли далее. Так как множество растений подвержены нападению и поеданию со стороны насекомых, то ученые генной инженерии провели эксперимент с давно известной бактерией Bacillus-Thiringiensis, которая продуцирует белок, оказалось она является очень токсичной для многих видов насекомых, но в то же время безопасна для млекопитающих.,  белок  (дельта-эндотаксин, CRY-белок) продуцируется различными штамами Bacillus-Thiringiensis. Это прототаксин который расщепляется в кишечнике насекомых, образуя активированный токсин. Активизированный белок специфично связывается с рецепторами средней кешки насекомых, что приводит к образованию пор и лизису клеток кишечного эпителия. Взаимодействие токсинов с рецепторами строго специфично, что усложняет подбор комбинации токсин-насекомое. В природе найдено большое количество штаммов Bacillus-Thiringiensis, чьи токсины действуют только на определенные виды насекомых. Препараты  Bacillus-Thiringiensis в течение десятилетий использовались для контроля насекомых на полях.
Встраивание гена этого белка в геном растений дает возможность получить трансгенные растения, не поедаемые насекомые. Но этот метод потребовал большой работы со стороны генной инженерии, в плане подборов необходимых штаммов и созданию генно-инженерных конструкций, которые дают наибольший эффект для конкретных классов насекомых. Кроме видоспецифичности по действию на насекомых встраивание прокариотических генов дельта-токсинов в геном растений даже под контролем сильных эукариотических промоторов не привело к высокому уровню экспрессии. Предположительно такое явление возникло в связи с тем, что эти бактериальные гены содержат значительно больше адениновых и тиминовых нуклеатидных оснований, чем растительная ДНК. Эта проблема была решена путем создания модефицированных генов, где один из природного гена вырезали и добавили те или иные фрагменты с сохранением доменов, кодирующих активные части дельта-токсинов. Так, например, с помощью таких подходов был получен картофель, устойчивый к колорадскому жуку. В настоящее время так называемый Bt – растения хлопка и кукурузы занимают основную долю в общем объеме генетически модифицированных растений этих культур, которые выращивают на полях США.
В 1983 году американцы вывели трансгенный табак, неуязвимый для определенного вида вредителей. И вот тогда начался настоящий бум. Уже через 4 года трансгенные растения, устойчивые к насекомым и гербицидам, поступили в массовую продажу.
Кроме того, необыкновенная притягательность трансгенов кроется в том существенном факте, что биотехнологии позволяют выводить новые культуры за 2-3 года. Обычные же методы селекции путем отбора и скрещивания - это 10 и более лет. За эти годы получены, в частности, помидоры и картофель, огурцы и соя, кукуруза, рапс и т.д.
Еще 10 лет тому назад биотехнология растений заметно отставала в своем развитии, но за последние 3 года наблюдается быстрый выброс на рынок трансгенных растений с новыми полезными признаками. Трансгенные растения в США в 1996 году занимали площадь 3 млн. акров, в 1997 году площадь увеличилась до 15 млн. акров, в 1998 году – до 60 млн. акров, а в прошлом году до 80 млн. акров. Поскольку основные трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, есть все основания ожидать, что площадь под генноиженерные растения в будущем (2001 году) увеличатся в 4-5 раз.
В апреле 1998 года доля в процентах трансгенных форм растений в сельском хозяйстве составило:
?       кукуруза – 6
?       соя – 12
?       хлопчатник – 15
?       томаты – <1
 
Так как число жителей за последнее столетие увеличилось с 1.5 до 5.5 млрд. человек, а к 2020 году предполагается вырост до 8 млрд., таким образом, возникает огромная проблема, стоящая перед человечеством. Эта проблема заключается в огромном увеличение производства продуктов питания, несмотря на то, что за последние 40 лет производство увеличилось в 2.5 раза, все равно этого не достаточно. И в мире в связи с этим наблюдается социальный застой, который становится все более настоятельным.
Другая проблема возникла с медицинским лечением. Несмотря на огромные достижение современной медицины производимые сегодня лекарственные препараты столь дороги, что ? населения земли сейчас полностью полагаются на традиционные донаучные методы лечения, прежде всего на неочищенные препараты растительного происхождения.
В развитых странах лекарственные средства на 25% состоят из природных веществ, выделенных из растений.  Открытия последних лет (противоопухолевые препараты: таксол, подофиллотоксин) свидетельствуют о том, что растения еще долго будут оставаться источником полезных биологически-активных веществ (БТА), и что способности растительной клетки к синтезу сложных БТА все еще значительно превосходят синтетические способности инженера-химика. Вот почему ученые взялись за проблему создания трансгенных растений.
Современная биотехнология в состоянии манипулировать многими важнейшими признаками, которые можно разделить на две группы:
1.      Сельскохозяйственные производства. К ним можно отнести общей продуктивности растений за счет регулирования синтеза фитогормонов или дополнительного снабжения кислородом растительных клеток, а также признаки, обеспечивающие устойчивость к разного рода вредителям, кроме этого в создании форм растений с мужской стерильностью и возможностью дольше сберегать урожай.
2.      К признакам, которые влияют на качество продукции, относится возможность манипулировать молекулярным весом жирных кислот. Растения будут производить биодеградирующий пластик, по цене сопоставимой с полиэтиленом, получаемым из нефти. Открылась возможность получения крахмала с заданными физико-химическими свойствами. Аминокислотный состав у растений запасных белков становится более сбалансированным и легко усвояем для млекопитающих. Растения становятся продуцентами вакцин, фармакологических белков и антител, что позволяет удешевить увеличение разных заболеваний, в том числе и онкологических. Получены и испытываются трансгенные растения хлопка с уже окрашенным волокном, более высоким качеством.
 
 
ГЕННЫЕ ВАКЦИНЫ
 
Есть отрасль человеческой деятельности, в которую генная инженерия вторглась в самые первые годы своего существования, - это медицина.
Наибольших успехов  генетическая  инженерия  достигла  на уровне генов,  что связано с развитием новых методов, в первую очередь, разработанных для клеток бактерий и вирусов.
Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека.
Медицина сталкивается с множеством неполадок в человеческом организме.
Наиболее известны инфекционные заболевания, вызываемые бактериями ( чума, холера, туберкулез, дифтерия) и вирусами (грипп, бешенство, оспа, корь, гепатит).
Активировать иммунную систему, не зная еще о ее существовании, впервые смог в 1798 г. английский медик Э. Дженнер.
В то время черная оспа была опасной болезнью. Известна была и сравнительно безобидная болезнь – коровья оспа, вызывавшая язвочки на вымени  у коров. Доярки часто заражались ею, и Дженнер подметил, что после этого они оказывались устойчивыми к черной оспе.
Э. Дженнер предложил через царапины на предплечье заражать людей коровьей оспой. После первичного иммунного ответа человек оказывался неуязвимым к оспе человеческой, черной. Дженнер назвал эту процедуру вакцинацией.
Вакцины — одно из самых значительных достижений медицины, их использование к тому же чрезвычайно эффективно с экономической точки зрения. В последние годы разработке вакцин стали уделять особое внимание. Это обусловлено тем, что до настоящего времени не удалось получить высокоэффективные вакцины для предупреждения многих распространенных или опасных инфекционных заболеваний. По данным созданной в прошлом году международной организации «Всемирный союз по вакцинам и иммунизации» (в числе ее участников — ВОЗ, ЮНИСЕФ, Международная федерация ассоциаций производителей фармацевтической продукции, Программа Билла и Мелинды Гейтс по вакцинации детей, Рокфеллеровский фонд и др.), в настоящее время отсутствуют эффективные вакцины, способные предупредить развитие СПИДа, туберкулеза и малярии, от которых в 1998 г. умерло около 5 млн человек. Кроме того, увеличилась заболеваемость, обусловленная теми инфекциями, с которыми человечество ранее успешно боролось. Этому способствовало появление лекарственно-устойчивых форм микроорганизмов, увеличение числа ВИЧ-инфицированных пациентов с иммунной недостаточностью, ослабление систем здравоохранения в странах с переходной экономикой, увеличение миграции населения, региональные конфликты и др. При этом распространение микроорганизмов, устойчивых к воздействию антибактериальных препаратов, приобрело характер экологической катастрофы и поставило под угрозу эффективность лечения многих тяжелых заболеваний. Повышенный интерес к вакцинам возник после того, как была установлена роль патогенных микроорганизмов в развитии тех заболеваний, которые ранее не считали инфекционными. Например, гастриты, пептическая язва желудка и двенадцатиперстной кишки, ассоциированная с H. pylori, злокачественные новообразования печени (вирусы гепатита В и С).
Поэтому в последние 10–15 лет правительства многих стран стали принимать меры, направленные на интенсивную разработку и производство принципиально новых вакцин. Например, в США в 1986 г. был принят закон («National Vaccine Injury Compensation Act»), защищающий производителей вакцин от юридической ответственности при подаче судебных исков, связанных с развитием побочных реакций при вакцинации, если они не были обусловлены ошибками при производстве вакцины. С изменением ситуации увеличился и мировой рынок вакцин, объем продаж которого в 1998 г. составил 4 млрд долларов США в стоимостном выражении. Однако многие считают, что в ближайшие годы этот сектор фармацевтической промышленности будет развиваться гораздо быстрее.

Разработка ДНК-вакцин

Используемые сегодня вакцины можно разделить в зависимости от методов их получения на следующие типы:
• живые аттенуированные вакцины;
• инактивированные вакцины;
• вакцины, содержащие очищенные компоненты микроорганизмов (протеины или              полисахариды);
• рекомбинантные вакцины, содержащие компоненты микроорганизмов, полученные методом генной инженерии.
Технологию рекомбинантной ДНК применяют также для создания живых ослабленных вакцин нового типа, достигая аттенуации путем направленных мутаций генов, кодирующих вирулентные протеины возбудителя заболевания. Эту же технологию используют и для получения живых рекомбинантных вакцин, встраивая гены, кодирующие иммуногенные протеины, в живые непатогенные вирусы или бактерии (векторы), которые и вводят человеку.
В 1990 г. в некоторых исследовательских лабораториях приступили к разработке новых вакцин, которые основаны на введении «голой» молекулы ДНК. Уже в 1992–1993 гг. несколько независимых групп исследователей в результате эксперимента доказали, что введение чужеродной ДНК в организм животного способствует формированию иммунитета.
Принцип применения ДНК-вакцин заключается в том, что в организм пациента вводят молекулу ДНК, содержащую гены, кодирующие иммуногенные белки патогенного микроорганизма. ДНК-вакцины называют еще генными, генетическими, полинуклеотидными вакцинами, вакцинами из нуклеиновых кислот. На совещании специалистов по генным вакцинам, проведенном в 1994 г. под эгидой ВОЗ, было решено отдать предпочтение термину «вакцины из нуклеиновых кислот» с их подразделением соответственно на ДНК- и РНК-вакцины. Такое решение основывалось на том, что употребление термина «ДНК-вакцина» не сформирует ошибочное мнение о том, что новые вакцины вносят изменения в генетические структуры организма вакцинируемого человека. Тем не менее, многие специалисты считают более точным термин «генные вакцины» (поскольку иммунная реакция направлена не против ДНК, а против антигенного белка, кодируемого геном), который также часто применяют.
Для получения ДНК-вакцин ген, кодирующий продукцию иммуногенного протеина какого-либо микроорганизма, встраивают в бактериальную плазмиду. Плазмида представляет собой небольшую стабильную молекулу кольцевой двухцепочечной ДНК, которая способна к репликации (воспроизведению) в бактериальной клетке. Кроме гена, кодирующего вакцинирующий протеин, в плазмиду встраивают генетические элементы, которые необходимы для экспрессии («включения») этого гена в клетках эукариотов, в том числе человека, для обеспечения синтеза белка. Такую плазмиду вводят в культуру бактериальных клеток чтобы получить большое количество копий. Затем плазмидную ДНК выделяют из бактерий, очищают от других молекул ДНК и примесей. Очищенная молекула ДНК и служит вакциной. Введение ДНК-вакцины обеспечивает синтез чужеродных протеинов клетками вакцинируемого организма, что приводит к последующей выработке иммунитета против соответствующего возбудителя. При этом плазмиды, содержащие соответствующий ген, не встраиваются в ДНК хромосом человека.
ДНК-вакцины можно вводить в солевом растворе обычным парентеральным способом (внутримышечно, внутрикожно). При этом бoльшая часть ДНК поступает в межклеточное пространство и только после этого включается в клетки. Применяют и другой метод введения, используя так называемый генный пистолет (рис. 5, 6). Для этого ДНК фиксируют на микроскопических золотых гранулах (около 1–2 мкм), затем с помощью устройства, приводимого в действие сжатым гелием, гранулы «выстреливают» непосредственно внутрь клеток. Следует отметить, что аналогичный принцип введения лекарства с помощью струи сжатого гелия используют и для разработки новых способов доставки лекарственных средств (с этой целью оптимизируют размеры частиц лекарственного вещества и их плотность для достижения необходимой глубины проникновения в соответствующую ткань организма). Этот метод требует очень небольшого количества ДНК для иммунизации. Если при иммунизации классическими субъединичными вакцинами вводят микрограммы протеина, то при использовании ДНК-вакцины — нанограммы и даже меньше. Говоря о минимальном количестве ДНК, достаточном для индукции иммунного ответа, С.А. Джонстон, директор Центра биомедицинских изобретений Техасского университета, в журнале «The Scientist» (1998) отмечает, что с помощью генного пистолета можно однократно ввести мыши «фактически 27 тыс. различных плазмид и получить иммунный ответ на индивидуальную плазмиду».
Последующие эксперименты подтвердили способность ДНК-вакцин формировать иммунитет в отношении разнообразных возбудителей.
ДНК-вакцины обладают рядом преимуществ по сравнению с традиционными вакцинами.
В прошлом генетика и медицинская генетика развивалась как относительно независимые отрасли науки, теперь многие из их разделов оказались вовлечённые в общее русло молекулярно-генетических исследований, и провести между ними грань – трудно.
Человеческие белки,  например ИНСУЛИН,  ИНТЕРФЕРОН, могут быть получены микробиологическим синтезом в клетках бактерий, несущих соответствующий ген человека.  Свойства самих бактерий могут  быть  изменены  в сторону сверх синтеза нужного микробного препарата.  На этих основах создается новая биотехнологическая промышленность,  которая  в  недалеком  будущем окажет большое влияние на успехи сельского хозяйства и медицины.
Вместе с тем и в сегодняшних исследованиях по генной  терапии  необходимо  учитывать,  что последствия манипулирования генами изучены недостаточно.  При разработке  программ  генной терапии  принципиальное  значение  имеют  вопросы безопасности предлагаемых схем лечения, как для самого пациента,  так и  для популяции в целом. Важно, что при проведении испытаний ожидаемый лечебный эффект или возможность  получения  дополнительной полезной информации превосходили потенциальный риск предлагаемой процедуры.  Важнейшим элементом в программе генной терапии является анализ последствий проводимых процедур. Этот контроль проводят на всех этапах терапии. Проводится оценка клинического  (терапевтического)  эффекта;  изучаются возможные побочные последствия и способы их предупреждения.
 

Перспективы клонирования животных и человека

Идея клонирования животных, т.е. получение генетически идентичных копий, родилась благодаря успешным экспериментам по пересадке ядер дифференцированных клеток в энуклеированные яйцеклетки или ооциты, выполненным на амфибиях. Цель этих экспериментов была сугубо теоретическая - выяснить вопрос, способно ли ядро(геном) обеспечить полное развитие подобно оплодотворенной яйцеклетке. Фактически речь шла о возможности обратимости эмбриональной дифференцировки и выяснению вопроса: претерпевает ли геном в процессе развития необратимые изменения или модификации? Успешные опыты J.Gurdon и его сотрудников, показавшие возможность развития взрослых амфибий из реконструированных яйцеклеток после трансплантации в них ядер из клеток эпителия кишечника плавающей личинки (головастика), были интерпретированы как убедительное доказательство, что геном дифференцированных клеток способен к репрограммированию в цитоплазме яйцеклетки и восстановлению тотипотентности, подобно оплодотворенному яйцу. Из этих р
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.