На бирже курсовых и дипломных проектов можно найти готовые бесплатные и платные работы или заказать написание уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов по самым низким ценам. Добавив заявку на написание требуемой для вас работы, вы узнаете реальную стоимость ее выполнения.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Быстрая помощь студентам

 

Результат поиска


Наименование:


реферат Высокочастотные методы обработки пищевых продуктов

Информация:

Тип работы: реферат. Добавлен: 18.11.2012. Сдан: 2012. Страниц: 11. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«СЕВЕРО-КАВКАЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
 
 
 
 
 
 
РЕФЕРАТ
по дисциплине:
на тему: «Высокочастотные методы обработки пищевых продуктов»
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ставрополь, 2011
1.      Общие понятия методов обработки пищевых продуктов
 
Главной задачей, стоящей перед отраслями пищевой промышленности, в том числе мясной, является удовлетворение спроса населения продуктами питания.
Решить данную проблему возможно:
- путем увеличения количества вырабатываемой продукции и сокращения потерь сырья на стадиях переработки;
- путем совершенствования процессов переработки самого сырья.
В области переработки сырья решить проблему увеличения качества продукции можно путем:
- уменьшения потерь сырья;
- увеличения выхода готовой продукции;
- повышения биологической ценности продуктов;
- сокращения длительности технологических процессов и др.
Однако реализовать эти возможности в полной мере на основе традиционных методов обработки пищевых продуктов либо чрезвычайно затруднительно, либо совсем невозможно. Это связано с тем, что традиционно используемые методы в своем развитии достигли совершенства, что является первопричиной необходимости поиска новых эффективных методов обработки.
Так, например, для тепловых процессов, как то размораживание, варка, бланшировка, стерилизация и др., определяющим параметром является разность температур, увеличение которой при обработке пищевых продуктов не может быть бесконечным, так как в области высоких температур продукты подвергаются значительным изменениям, таким как потеря биологической ценности, низкий выход (потеря влаги) и т.д.
Следующей причиной является ограниченность запасов традиционных видов топлива (угля, нефти, газа), которые являются пока основными источниками энергии для большинства технологических процессов (получение пара, горячей воды и т.д.), а также переход отраслей народного хозяйства на новый вид источника энергии – электрическую энергию.
Последняя причина является более важной, она заставляет искать новые пути решения в области переработки пищевого сырья.
В настоящее время баланс выработки различных видов энергии представляет собой следующее:
- 80 % энергии идет на получение промышленной и бытовой;
- 20 % - только для получения электрической энергии.
При этом в качестве основных источников для получения этих энергий используется уголь, нефть, природный газ, незначительная доля торфа, а также электрическая энергия на атомных и гидростанциях и др.
Резкое увеличение объемов потребления нефти, газа, угля привело к истощению их запасов. И в настоящее время разведанных запасов нефти, газа хватит всего на несколько десятилетий, а угля на сто лет.
Следовательно, объективным фактором является то, что в технологических процессах производства более широкое применение будет находить электрическая энергия и способы, которые основаны на использовании электрической энергии.
Под электротехнологией принято понимать обработку пищевых материалов (продуктов) в электрическом, магнитном, электромагнитном полях, электрическим током, электрическими зарядами и т.д., основанную на использовании электромагнитных и оптических свойств этих материалов.
Пищевое сырье, продукты, в том числе мясо, по своей физической природе обладают определенными электрофизическими свойствами:
- электропроводимостью;
- диэлектрической и магнитной проницаемостью;
- оптическими характеристиками.
Эти свойства проявляются при воздействии на материал (вещество) электрическим, магнитным и электромагнитным полями.
В результате этих воздействий происходят изменения в состоянии электрических зарядов данной среды, что приводит к выделению теплоты в веществе и одновременно к изменению физических и химических свойств.
Электротехнологию принципиально отличает то, что электричество используется непосредственно в технологических процессах для обработки продуктов, исключая какие бы то ни было превращения.
Возможность применения электрической энергии в различных ее формах позволило создать принципиально новые, так называемые электрофизические методы для обработки пищевых продуктов, такие как:
- обработка пищевых продуктов в электростатическом поле;
- обработка пищевых продуктов электрическим током промышленной частоты, токами высокой частоты;
- обработка пищевых продуктов в электромагнитном поле токами высокой и сверхвысокой частоты.
Новые электрофизические методы обработки пищевых продуктов обладают рядом преимуществ:
1.      Сокращается длительность технологических процессов в 5-60 раз.
2.      Повышается производительность труда.
3.      Сохраняется пищевая ценность продукта.
4.      Осуществляется высокое бактерицидное действие обработки.
5.      Снижаются тепловые потери в окружающую среду.
6.      Возможна автоматизация технологического процесса.
7.      Происходит безинерционность работы оборудования.
8.      Имеют высокий КПД использования энергии.
9.      Улучшаются санитарно-гигиенические условия производства.
10. Снижаются производственные затраты на 20-40 %.
Недостатками являются:
1.      Требование повышенной энергобезопасности оборудования.
2.      Трудность проведения дозиметрического контроля за уровнем облучения.
3.      Возможность возникновения температурной неоднородности внутри продукта при нагреве.
4.      Наличие квалифицированного персонала.
Многообразие новых методов обработки потребовало и их системности, упорядочения, что позволило бы их рассматривать во взаимосвязи.
 
2.      Теоретические основы высокочастотного и сверхчастотного методов нагрева
 
Высокочастотный (ВЧ) и сверхвысокочастотный (СВЧ) нагрев пищевых продуктов позволяет значительно интенсифицировать термические процессы.
Процесс трансформации энергии электромагнитного поля высокой или сверхвысокой частоты в теплоту принято называть диэлектрическим нагревом или ВЧ (СВЧ)-нагревом.
Большинство пищевых продуктов и сред представляют собой с электрофизической точки зрения несовершенные диэлектрики. Они, как правило, имеют достаточно высокую диэлектрическую проницаемость и низкую электропроводность, обусловленную, как правило, свободными ионами вещества. Такие продукты и среды способны подвергаться диэлектрическому нагреву, который основан на смещении зарядов и связанных с ними молекул (поляризации) при воздействии на вещество (продукт) переменного элетромагнитного поля. При этом на перемещение заряженных частиц затрачивается работа, которая из-за наличия внутреннего межмолекулярного трения превращается в теплоту.
В веществе (продукте) может возникать несколько видов поляризации: электронная, атомная, дипольная.
Электронная поляризация выражается относительным смещением среднего положения электронов относительно среднего положения атома.
Ионная (атомная) поляризация вызывается смещением положительных и отрицательных ионов в материале.
Дипольная поляризация обусловлена наличием постоянных диполей (полярных молекул) вещества, которые в результате воздействия поля могут поворачиваться из случайных направлений в направление поля, вызывая тем самым поляризацию вследствие ориентации постоянных диполей.
Величина полной поляризации диэлектрика определяется суммарным эффектом всех перечисленных видов поляризации и обуславливает его диэлектрическую проницаемость.
Тепловую энергию, выделяемую в единице объема вещества в результате диэлектрического нагрева, принято характеризовать удельной мощностью (Руд, Вт/м3), которая согласно закону Джоуля-Ленца определяется по формуле:
 
Руд = 0,556 · 10-10 · ?' · tg? · f · Е2,
 
где ?'- относительная диэлектрическая проницаемость вещества;
Е - напряженность электрического поля в рассматриваемом объеме вещества, В/м;
? - угол диэлектрических потерь;
f - частота, Гц.
 
В соответствии с международным соглашением для промышленного применения разрешено использовать только отдельные участки                                   СВЧ-диапазона волн (900±15 МГц и 2400±50 МГц). Поэтому СВЧ-аппараты используют только эти частоты.
Эффект объемного нагрева при тепловой обработке пищевых продуктов в переменном электромагнитном поле достигается благодаря проникновению поля в продукт на значительную глубину.
Под глубиной проникновения электромагнитного поля в продукт (среду) подразумевается расстояние ? (м) от поверхности продукта внутрь, на котором мощность внутренних источников теплоты уменьшается в е раз и которое определяется по формуле:
 
? = 9,55 · 1011 / (f · (?')1/2 · tg?).
 
Существенный технологический результат при использовании токов ВЧ- и СВЧ-обработки можно получить для ряда процессов, среди которых основное место занимают тепловые и массообменные (нагрев, стерилизация, размораживание, сушка, пастеризация).
Применение СВЧ-нагрева позволяет значительно интенсифицировать технологические процессы пищевых производств, связанные с нагревом продукции, а также разработать их новые виды, особенно комбинируя     СВЧ-нагрев с традиционными способами энергоподвода, таким как варка, сушка, стерилизация, пастеризация, размораживание, сублимация и т.д.   СВЧ-нагрев позволяет реализовать безотходные и энергосберегающие технологии, значительно увеличить выпуск готовой продукции без больших капитальных затрат, улучшить санитарно-гигиенические условия труда.
В пищевой промышленности важным и трудоемким процессом является размораживание продуктов. Использование диэлектрического нагрева позволяет резко сократить продолжительность размораживания, а также улучшить качественные показатели продукции.
Преимущества метода следующие:
- относительно короткое время размораживания;
- отсутствие повышенной температуры на поверхности продукта;
- отсутствие роста бактерий;
- потери сока при нагревании мяса на порции незначительные (менее 1 %);
- длительность размораживания не зависит от толщины блоков (при      ВЧ-нагреве);
- незначительная занимаемая площадь.
Вследствие кратковременности размораживания микробиальная обсемененность мяса после СВЧ-нагрева на порядок ниже, чем у сырья, размороженного в воздушной среде. Оценка санитарного состояния фарша показала, что микробное число опытных партий мяса на 30-40 % меньше, чем у контрольных. Таким образом, вареные колбасы, изготовленные из мяса, темперированного СВЧ-энергией, будут более устойчивы к хранению.
Доказано, что СВЧ-поле в отношении микрофлоры обладает бактерицидным и бактериостатическим действием. Было показано, что стерилизующий эффект СВЧ-поля явно выражен - выживаемость бактерий (кишечная палочка) после такой обработки в два и более раз меньше, чем при тепловой обработке.
В целом бактерицидный эффект при СВЧ-нагреве проявлялся значительно раньше, чем при тепловом. Бактерицидное и бактериологическое действие является результатом селективного выделения энергии на множественных границах раздела бактериальной суспензии, имеющих более высокий коэффициент потерь.
Установлено, что СВЧ-нагрев обеспечивает эффективную пастеризацию (не менее 99,5 %) мяса. Микробиологические исследования указывают на отсутствие микробов в период двухмесячного хранения, однако снижение органолептических показателей при хранении в полимерной упаковке обеспечивает сроки хранения восьмью неделями, что является значительным периодом.
Следует отметить, что СВЧ- и ВЧ-нагрев пищевых продуктов - достаточно сложная задача не только с точки зрения техники генерирования СВЧ и ВЧ, но и со стороны особенностей строения и свойств продуктов. Удельная мощность рассеивания энергии в материале зависит от его электрофизичесих параметров (диэлектрическая проницаемость, проводимость), которые в свою очередь зависят от влажности и других факторов. В процессе тепловой обработки продукты подвергаются глубоким изменениям, в том числе и их диэлектрические свойства, что влияет на течение СВЧ- и ВЧ-нагрева. Особенно этот эффект заметен при размораживании мяса, когда фактор потерь лавинообразно возрастает в десятки раз, и при сушке, когда влажность уменьшается, при этом фактор диэлектрических потерь уменьшается и соответственно уменьшается выделяемая энергия. Естественно, что управлять такими процессами трудно.
Электромагнитное поле СВЧ, проникая в пищевые продукты на значительную глубину, не обеспечивает абсолютно равномерного нагрева его во всем объеме. Такая неравномерность связана со следующими причинами: падением удельной мощности, неоднородностью состава и влагосодержания, формой изделия (продукта). Рекомендуется выбирать форму обрабатываемого изделия такой, чтобы его линейные размеры хотя бы в одном измерении не превышали удвоенного значения глубины проникновения ?. В противном случае вследствие возникающего градиента температуры и избыточного давления возникают явления переноса теплоты и массы. В зависимости от этого, направление переноса может быть направленно как от периферии внутрь продукта, так и наоборот, а также менять знак в процессе СВЧ-нагрева. Векторы переноса теплоты и массы могут как совпадать по направлению, так и быть встречными. Следует также отметить, что возникающее в процессе СВЧ-нагрева внутреннее давление из-за недостаточной скорости переноса массы (т.е. влаговыделений) может привести к образованию трещин и пустот. Поэтому рекомендуется сочетать СВЧ-нагрев с другими видами тепловой обработки, позволяющими избегать указанные недостатки.
В настоящее время имеется достаточно большое количество конструкций СВЧ-аппаратов для обработки пищевых продуктов, которые можно классифицировать по ряду признаков: по мощности - малой мощности (до 1,5 КВт), средней мощности (1,5-5,0 КВт), большой мощности (5,0-10,0 КВт); по производительности - малой (5-10 кг/час), средней (15-40 кг/час), большой (от 50 кг до нескольких тонн в час); по принципу действия - периодического и непрерывного действия; по исполнению - настольные, напольные, встроенные.
Для СВЧ-термообработки используют различные агрегаты. В большинстве случаев промышленные СВЧ-устройства непрерывного действия для нагрева пищевых продуктов представлены в виде линейных конвейеров.
7
 
 
 
 
 
 
 
 
 
 
Рисунок 1 – Конвейерная СВЧ-установка с распределенным вводом
энергии в рабочую камеру: 1 - конвейерная лента; 2 - рабочая камера;     3 - ловушка; 4 - СВЧ-генератор; 5 - волновод; 6 - источник сухого воздуха (газа); 7 - щели в волноводе; 8 - продукт
 
Нагревательная камера конвейерной установки, приведен­ной на рисунке 1, образована длинным металлическим го­ризонтальным туннелем прямоугольного сечения. Длина камеры составляет 2,4 м, высота - 0,3 м и ширина - 0,45 м. С обоих концов тун­неля расположены ловушки, в которых должна затухать не поглощенная продуктом энергия. СВЧ-энергия подается в ра­бочую камеру через щелевой волновод, имеющий активную дли­ну 1,5 м. Такая система обеспечивает более равномерное рас­пределение энергии в объеме рабочей камеры и снижает макси­мальную напряженность электрического поля в камере по срав­нению со случаем сосредоточенного ввода энергии. Это очень важно при обработке продуктов с низкой электрической проч­ностью или при обработке продукта в вакууме. Форму щелей подбирают экспериментальным путем, длину щелей изменяют по длине волновода так, чтобы обеспечивалось желаемое распреде­ление энергии по длине камеры. П
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.