На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Решение управленческих задач в агропромышленном комплексе. Задачи и методы регрессионного анализа. Основные методы управления. Парная и множественная линейная регрессия. Нелинейная регрессия и коэффициент эластичности. Влияние маркетинга на прибыль.

Информация:

Тип работы: Контрольная. Предмет: Менеджмент. Добавлен: 13.01.2011. Сдан: 2011. Уникальность по antiplagiat.ru: --.

Описание (план):


КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Управление и маркетинг в АПК»
Методы решения управленческих задач в АПК: регрессионный анализ

Содержание

    ВВЕДЕНИЕ
    1 Основные методы управления
    2 Методы регрессионного анализа
    3 Парная линейная регрессия
    4 Множественная линейная регрессия
    5 Нелинейная регрессия. Коэффициент эластичности
    Заключение
    Список литературы

ВВЕДЕНИЕ


Методы управления -- это система способов воздействия субъекта управления на объект для достижения определенного результата. Теоретическая основа методов управления требует глубокой и тщательной проработки, поскольку наиболее активный и действенный инструмент управления способен при неправильном его использовании привести к отрицательным последствиям. Это тем более усугубляется при деформациях или неверном формировании механизма управления.
Существует несколько подходов к классификации методов управления. Однако к человеку и коллективу имеет смысл применять только такие средства воздействия, которые затрагивают их интересы. Поэтому заслуживает внимания классификация по содержанию воздействия: экономическое, организационное, социально-психологическое. Основой данной классификации являются побудительные мотивы отдельных работников к труду, их потребности и интересы. Именно они определяют поведение людей.
Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.
Решение названных задач опирается на соответствующие, приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.
Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов, изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.
Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы -- параметрические -- и принято называть корреляционными.
Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

1 Основные методы управления

Существует несколько подходов к классификации методов управления. Однако к человеку и коллективу имеет смысл применять только такие средства воздействия, которые затрагивают их интересы. Поэтому заслуживает внимания классификация по содержанию воздействия: экономическое, организационное, социально-психологическое. Основой данной классификации являются побудительные мотивы отдельных работников к труду, их потребности и интересы. Именно они определяют поведение людей.

Экономико-математические методы это способы воздействия основанные на поиске экстремумов аналогичных оптимизационных кривых в рамках всей макро и микро экономической системы.

Все экономика - математические методы управления основаны на:

1. Регрессионный анализ;

2. На методе Лагранжа;

3. На методе Гаусса;

4. На линейном программировании;

5. Ценно-системное программирование;

6. На методе ветвей и границ

7. Основывается с Булевыми переменными;

8. На дискретном программировании;

9. На теории графов;

10. На стохастические (вероятностные)

11. На теории игр (моделирование в лаборатории)

Экономические методы основаны на социально-экономических законах и закономерностях развития объективного мира -- природы, общества и мышления. Использование этих методов опирается на систему экономических интересов личности, коллектива и общества.

Организационно-распорядительные методы базируются на правах и ответственности людей на всех уровнях хозяйствования и управления. Эти методы предполагают использование руководителем власти, ответственности подчиненных и создание системы организационных отношений.

Социально-психологические методы построены на формировании и развитии общественного мнения относительно общественно и индивидуально значимых нравственных ценностей -- добра и зла, сути жизни, нравственных начал в обществе, отношений к личности и т. д.

2 Методы регрессионного анализа

После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х1, х2,…, хк отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.

Функция f(х1, х2,…, хк) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин «регрессия» (лат. -regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». С тех пор термин «регрессия» широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией ? и оценкой y регрессии. Пусть результативный показатель у связан с аргументом х соотношением:

у=2х1,5+е,
где - е случайная величина, имеющая нормальный закон распределения, причем Ме = 0 и D е = у2. Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х1.5.
Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+е, и представленной на рис. 1
Рисунок 1 - Взаимное расположение истиной f (х) и теоретической ? модели регрессии
Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида ? = в01x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b0+b1x. Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х1,5, теоретической аппроксимирующей функции регрессии ? = в01x .
Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью ? объяснялась бы только ограниченностью выборки.
С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).
Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений ,? = f(хi), где , хi - значение вектора аргументов в i-м наблюдении: ?(yi - f(хi)2 > min. Получаемая регрессия называется среднеквадратической.
Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем ,? = f(хi), среднеабсолютную медианную регрессию ? |yi - f(хi )| >min.
Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных хj = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения хj.
Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у , являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией у2.
В общем линейная модель регрессионного анализа имеет вид:

Y = Уk j=0вj цj (x1, x2 . . ..,xk)+Э

где цj - некоторая функция его переменных - x1, x2 . . ..,xk , Э - случайная величина с нулевым математическим ожиданием и дисперсией у2 .

В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.

Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в «среднем» у есть линейная функция от х, т. е. имеется уравнение регрессии

у=М(у/х)=в 0+ в1 х)

где М(у1х) - условное математическое ожидание случайной величины у при заданном х; в0 и в1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.

Предположим, что для оценки параметров в0 и в1 из двухмерной генеральной совокупности (х, у) взята выборка объемом n, где (х, у,) результат i-го наблюдения (i = 1, 2,..., n). В этом случае модель регрессионного анализа имеет вид:

yj= в 0+ в1x+еj.

где еj.- независимые нормально распределенные случайные величины с нулевым математическим ожиданием и дисперсией у2 , т. е. М еj. = 0;

D еj.= у2 для всех i = 1, 2,..., n.

Согласно методу наименьших квадратов в качестве оценок неизвестных параметров в0 и в1 следует брать такие значения выборочных характеристик b0 и b1, которые минимизируют сумму квадратов отклонений значений результативного признака уi от условного математического ожидания ?i

Методику определения влияния характеристик маркетинга на прибыль предприятия рассмотрим на примере семнадцати типичных предприятий, имеющих средние размеры и показатели хозяйственной деятельности.

При решении задачи учитывались следующие характеристики, выявленные в результате анкетного опроса как наиболее значимые (важные):

* инновационная деятельность предприятия;

* планирование ассортимента производимой продукции;

* формирование ценовой политики;

* р и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.