На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Утилизация полимеров с помощью микроорганизмов

Информация:

Тип работы: курсовая работа. Добавлен: 26.11.2012. Сдан: 2012. Страниц: 15. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
Вятский государственный гуманитарный университет
 
Химический факультет
 
Кафедра химии
 
Курсовая  работа
 
Утилизация полимеров с помощью микроорганизмов
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Киров
2011
Содержание
 
1.Актуальность работы
 
2.Цель и задача  работы
 
3.Понятие - полимер
 
4.Наука о полимерах
 
5.Синтетические полимеры. Искусственные полимерные материалы
 
6.Классификация полимеров
 
7.Особенности полимеров
 
  8.Утилизация полимеров с помощью микроорганизмов
 
     Влияние строения и свойств полимеров на биоразложение
 
  9.Действие полимеров на живые организмы
 
  10.Вывод
 
11.Библиографический список                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Актуальность работы
 
Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту, однако основное количество полимерных отходов уничтожают – захоронением в почву или сжиганием.  Уничтожение отходов экономически невыгодно и технически сложно. Кроме того, захоронение, затопление и сжигание полимерных отходов ведет к загрязнению окружающей среды, к сокращению земельных угодий (организация свалок) и т.д. Однако и захоронение, и сжигание продолжают оставаться довольно широко распространенными способами уничтожения отходов пластмасс. Чаще всего тепло, выделяющееся при сжигании, используют для получения пара и электроэнергии. Но калорийность сжигаемого сырья невелика, поэтому установки для сжигания, как правило, являются экономически малоэффективными. Кроме того, при сжигании происходит образование сажи от неполного сгорания полимерных продуктов, выделение токсичных газов и, следовательно, повторное загрязнение воздушного и водного бассейнов, быстрый износ печей за счет сильной коррозии, поэтому нужно использовать  иные пути по утилизации полимерных отходов.
 
Цель и задача  работы
 
Целью работы является анализ имеющихся информационных данных по данной теме
Для достижения  этой цели нами была сформулирована следующая задача: изучить литературу по проблематике исследования.
 
Понятие – полимер
 
Полимеры (от греч. ????- — «много» и ????? — «часть») — неорганические и органические, аморфные и кристаллические вещества, получаемые путём многократного повторения различных групп атомов, называемых «мономерами», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов. Если связь между макромолекулами осуществляется с помощью слабых сил Ван-дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты.
Часто в его строении можно выделить мономер — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (—СН2—CHCl—)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами.
 
Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли -: полиэтилен, полипропилен, поливинилацетат и т. п.
 
Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.
 
Наука о полимерах
 
Термин “полимерия” был введен в науку И.Берцелиусом в 1833 г. для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствует современным представлениям о полимерах. “Истинные” полимеры к тому времени еще не были известны.
Химия полимеров возникла в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов  синтеза  каучука.
С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер.
 
Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х гг. XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.
 
Синтетические полимеры. Искусственные полимерные материалы
 
Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шёлк, хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось вначале XX в., хотя предпосылки для этого появились ранее.
 
Практически сразу же промышленное производство полимеров развивалось в двух направлениях — путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.
 
В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы — целлулоид — был получен ещё вначале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы.
 
Производство синтетических полимеров началось в 1906 г., когда                 Л. Бакеланд запатентовал так называемую бакелитовую смолу — продукт конденсации фенола и формальдегида, превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.
 
Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата — без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.
 
После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое ещё до войны. В 50-х гг. XX в. было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон — искусственная шерсть из полиакрилонитрила, — замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны — наиболее распространенные герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны — элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.
 
Список замыкают так называемые уникальные полимеры, синтезированные в 60-70 гг. XX в. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.
 
Классификация полимеров
 
По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.
Органические полимеры.
Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
Неорганические полимеры. Их основу составляют оксиды Si, Al, Mg, Ca и др. Углеводородный скелет отсутствует. К ним относятся керамика, слюда, асбест.
 
Следует отметить, что в технических материалах часто используют сочетания разных групп полимеров. Это композиционные материалы (например, стеклопластики).
 
По форме макромолекул полимеры делят на линейные, разветвленные (частный случай — звездообразные), ленточные, пространственные, со сложными пространственными трёхмерными структурами,  плоские, гребнеобразные, полимерные сетки и так далее. К линейным полимерам относится, например, целлюлоза, к разветвленным–амилопектин.
 
Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщенным распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть гомоамфифильными.
 
По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные.
 
Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим.
 
Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.
 
Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных — высокомолекулярных.
 
 
 
Особенности полимеров
 
Особые механические свойства:
эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).
 
Особенности растворов полимеров:
высокая вязкость раствора при малой концентрации полимера;
растворение полимера происходит через стадию набухания.
 
Особые химические свойства:
способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и  т. п.).
 
Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством — гибкостью.
 
Утилизация полимеров с помощью микроорганизмов
 
Проблем, связанных с утилизацией полимерных отходов, достаточно много. Они имеют свою специфику, но их нельзя считать неразрешимыми. Однако решение невозможно:
 
1.   без организации сбора, сортировки и первичной обработки амортизованных материалов и изделий;
 
2.   без разработки системы цен на вторичное сырье, стимулирующих предприятия к их переработке;
 
3.   без создания эффективных способов переработки вторичного полимерного сырья, а также методов его модификации с целью повышения качества;
 
 
4.   без создания специального оборудования для его переработки;
 
5.   без разработки номенклатуры изделий, выпускаемых из вторичного полимерного сырья.
 
 
Отходы пластических масс можно разделить на 3 группы:
 
а) технологические отходы производства, которые возникают при синтезе и переработке термопластов. Они делятся на неустранимые и устранимые технологические отходы.
Неустранимые – это кромки, высечки, обрезки, литники, облой, грат и т.д. В отраслях промышленности, занимающихся производством и переработкой пластмасс, таких отходов образуется от             5 до 35 % . Неустранимые отходы, по существу, представляющие собой высококачественное сырье, по свойствам не отличаются от исходного первичного полимера. Переработка его в изделия не требует специального оборудования и производится на том же предприятии.
Устранимые технологические отходы производства образуются при несоблюдении технологических режимов в процессе синтеза и переработки, т.е.                     это – технологический брак, который может быть сведен до минимума или совсем устранен. Технологические отходы производства перерабатываются в различные изделия, используются в качестве добавки к исходному сырью и т.д.;
 
б) отходы производственного потребления – накапливаются в результате выхода из строя изделий из полимерных материалов, используемых в различных отраслях народного хозяйства (амортизованные шины, тара и упаковка, детали машин, отходы сельскохозяйственной пленки, мешки из-под удобрений и т.д.). Эти отходы являются наиболее однородными, малозагрязненными и поэтому представляют наибольший интерес с точки зрения их повторной переработки;
 
в) отходы общественного потребления, которые накапливаются у нас дома, на предприятиях общественного питания и т.д., а затем попадают на городские свалки; в конечном итоге они переходят в новую категорию                       отходов – смешанные отходы.
Наибольшие трудности связаны с переработкой и использованием смешанных отходов. Причина этого в несовместимости термопластов, входящих в состав бытового мусора, что требует их постадийного выделения. Кроме того, сбор изношенных изделий из полимеров у населения является чрезвычайно сложным мероприятием с организационной точки зрения и пока еще у нас в стране не налажен.
Основное количество отходов уничтожают – захоронением в почву или сжиганием. Однако уничтожение отходов экономически невыгодно и технически сложно. Кроме того, захоронение, затопление и сжигание полимерных отходов ведет к загрязнению окружающей среды, к сокращению земельных угодий (организация свалок) и т.д. Однако и захоронение, и сжигание продолжают оставаться довольно широко распространенными способами уничтожения отходов пластмасс. Чаще всего тепло, выделяющееся при сжигании, используют для получения пара и электроэнергии. Но калорийность сжигаемого сырья невелика, поэтому установки для сжигания, как правило, являются экономически малоэффективными. Кроме того, при сжигании происходит образование сажи от неполного сгорания полимерных продуктов, выделение токсичных газов и, следовательно, повторное загрязнение воздушного и водного бассейнов, быстрый износ печей за счет сильной коррозии.
В начале 1970-х гг. прошлого века интенсивно начали развиваться работы по созданию био-, фото- и водоразрушаемых полимеров. Получение разлагаемых полимеров вызвало настоящую  сенсацию, и этот способ уничтожения вышедших из строя пластмассовых изделий рассматривался как идеальный.
Однако последующие работы в этом направлении показали, что трудно сочетать в изделиях высокие физико-механические характеристики, красивый внешний вид, способность к быстрому разрушению и низкую стоимость. Создание фото- и биоразрушаемых пластмасс основано на введении в цепь полимера фото- и био- активирующих добавок, которые должны содержать функциональные группы, способные разлагаться под действием ультрафиолетовых лучей или анаэробных бактерий. Трудность заключается в том, что добавки вводят в полимер на стадии синтеза или переработки, а разрушение его должно протекать после использования, но не во время переработки. Поэтому проблема заключается в создании активаторов разрушения, обеспечивающих определенный срок службы пластмассовых изделий без ухудшения их качества. Активаторы должны быть также нетоксичными и не повышать стоимость материала.
Существует три основных направления развития поисковых работ по освоению биодеградируемых пластмасс: полиэфиры гидроксикарбоновых кислот; пластические массы на основе воспроизводимых природных полимеров; придание биоразлагаемости промышленным высокомолекулярным синтетическим материалам.
Одним из  самых перспективных  биодеградируемых пластиков для применения в упаковке в настоящее время является полилактид – продукт конденсации молочной кислоты.
Полилактид в компосте биоразлагается в течение одного месяца, усваивается он и микробами морской воды. Если биодеградируемые полиэфиры с необходимыми товарными свойствами можно получить на основе гидроксикарбоновых кислот, то пластмассы, в состав которых входит крахмал, целлюлоза, хитозан или протеин, представляют собой, как правило, композиционные материалы, содержащие самые различные добавки.
Наиболее широко из ряда природных соединений в биоразлагаемых упаковочных материалах используется крахмал.
Для получения разрушаемой бактериями водорастворимой пленки из смеси крахмала и пектина в состав композиции вводят пластификаторы: глицерин или полиоксиэтиленгликоль. При этом отмечается, что с увеличением содержания крахмала хрупкость пленки увеличивается.
Из композиции, содержащей наряду с крахмалом амилозу и незначительное количество слабых кислот, экструзией получают листы, из которых формованием с раздувом изготавливают изделия для упаковки.
С  целью  снижения  себестоимости  биоразлагаемых  материалов  бытового  назначения  (упаковка, пленка для мульчирования в агротехнике, пакеты для мусора) рекомендуется использовать неочищенный крахмал, смешенный с поливиниловым спиртом и тальком.
Биоразлагаемые пластические массы на основе крахмала обладают высокой экологичностью и способностью разлагаться в компосте при 30 °С в течение двух месяцев с образованием благоприятных для растений продуктов распада.
В качестве возобновляемого природного биоразлагаемого начала при получении термопластов активно разрабатываются и другие полисахариды: целлюлоза и хитозан.
Полимеры, полученные  взаимодействием целлюлозы  с  эпоксидным  соединением и  ангидридами дикарбоновых кислот, полностью разлагаются в компосте за 4 недели. На их основе формованием получают бутыли, разовую посуду, пленки для мульчирования.
Стойкие к высоким и низким температурам многослойные материалы для упаковки получают из пленки целлюлозы, склеенной крахмалом, со стойкой к жирам бумагой, разрешенной к контакту с пищевыми продуктами. Такая упаковка может использоваться при запекании продуктов в электрических или микроволновых печах. Из тройной композиции (хитозан, микроцеллюлозное волокно и желатин) получают пленки с повышенной прочностью, способные разлагаться микроорганизмами при захоронении в землю. Они применяются для упаковки, изготовления подносов и т.д. Природные белки или протеины также привлекают разработчиков биоразлагаемых пластмасс. Для завертывания влажной пищи и изготовления коробок для пищевых продуктов создана пленка на основе    цеина – гидрофобного протеина. Направление по использованию природных полимеров (полисахарид, белков для изготовления  биоразлагаемых пластиков), прежде всего, интересно тем, что ресурсы исходного сырья постоянно возобновляемы и, можно сказать, неограниченны.
     Основная задача – это разработка композиционных биодеградируемых материалов, обеспечивающих необходимые свойства, приближающиеся к синтетическим многотоннажным полимерам. Важное место занимает проблема придания свойств биоразложения хорошо освоенным промышленным полимерам: ПЭ, ПП, ПВХ, полистиролу (ПС) и полиэтилентерефталату (ПЭТФ). Так как перечисленные полимеры и изделия из них при захоронении могут храниться "вечно", то вопрос придания им способности биоразлагаться стоит особенно остро.
В настоящее время активно разрабатываются три направления:
 
?   введение в структуру биоразлагаемых полимеров молекул, содержащих в своем составе функциональные группы, способствующие ускоренному фоторазложению полимера;
 
?  получение композиций многотоннажных полимеров с биоразлагаемыми природными добавками, способными в определенной степени инициировать распад основного полимера;
 
?    направленный синтез биодеградирующих пластических масс на основе промышленно освоенных синтетических продуктов.
 
К фоторазлагаемым полимерам относятся сополимеры этилена с оксидом углерода. Фотоинициаторами разложения базового полимера ПЭ или ПС являются винилкетоновые мономеры. Введение их в количестве 2-5 % в качестве сополимера к этилену и стиролу позволяет получать пластики со свойствами, близкими к ПЭ или ПС, но способными к фотодеградации при действии ультрафиолетового излучения в пределах   290-320 нм.
Еще одним подходом к решению проблемы уничтожения пластмассовых отходов является выведение особых мутаций микроорганизмов, способных разрушать синтетические полимеры.
 
 
Влияние строения и свойств полимеров на биоразложение.
 
Установлено, что с уменьшением молекулярной массы макромолекул  способность к биоразложению возрастает. Другой характеристикой полимеров, влияющей на способность к биоразложению, является их кристалличность. Установлено, что аморфные полимеры биоразлагаются лучше, чем кристаллические: с увеличением степени кристалличности способность к биоразложению уменьшается. Кристаллическая структура более высокомолекулярных полимеров по сравнению с низкомолекулярными биоразрушается хуже. Появление разветвлений в макромолекулах повышает их биоразлагаемость.
Введение различных модифицирующих добавок в полимеры может заметно увеличить или уменьшить их способность к биоразложению. Так, сложноэфирные пластификаторы, как правило, повышают биоразлагаемость ПВХ. Однако плохая диффузия хорошо биоразлагаемого пластификатора (дибутилфталата) к поверхности полимера приводит в конечном счете к плохой биоразрушимости ПВХ.
Биоразложение  полимера  является  сложным  процессом,  на  скорость  и  завершенность  которого влияют не только строение и свойства полимера, но и окружающие условия. Из окружающих условий первостепенное влияние оказывают влажность, температура, pH среды, свет, а также такой комплексный фактор, как контакт с почвой и тип почвы.
В последние годы исследования в области саморазрушающихся полимеров значительно сократились в основном потому, что издержки производства при получении таких полимеров, как правило, значительно выше,  чем при получении обычных пластических масс, и этот способ уничтожения является экономически невыгодным.
 
 
 
Утилизация полимеров с помощью микроорганизмов
 
Представители бактерий относятся к различным родам Грам-отрицательным и Грам-положительных аэробных и анаэробных организмов.
Грибы, способные аэробно разрушать полимерные соединения, относятся к родам Phanerochaete возбудители «белой гнили».
Образцы полимера измельчают до частиц размером не более 5 мм. К навескам добавляют  стерильную синтетическую  питательную среду.
В приготовленную питательную среду вносят посевной материал, содержащий микроорганизмы.
Процесс биодеструкции проходит в анаэробных условиях; на начальной стадии с выделением газа, в дальнейшем - с потреблением выделенного газа.
Микроскопирование фрагментов полиэтиленовой пленки показало, что деструкция полиэтилена начинается в местах механического повреждения пленки.
 
Биополимеры
Полимеры, поддающиеся биологическому разложению, были разработаны несколько десятилетий тому назад, но их полномасштабное коммерческое применение разворачивалось очень медленно. Это происходило оттого, что они, в целом, были более затратными и имели менее устойчивые физические свойства, чем у традиционных пластмасс. Кроме того, не существовало достаточных стимулов для производителей изделий из пластмасс для того, чтобы включать биоразлагаемые материалы в свою продукцию.
Тем не менее, положение дел меняется. Новые крупномасштабные производственные системы снижают затратность производства биоразлагаемых полимеров, а усовершенствованные технологии полимеризации и смешивания делают эти материалы более прочными и износостойкими. Кроме того, производители пищевых продуктов и напитков, которые стремятся снискать благосклонность общественного мнения, выражающего все большую озабоченность вопросами экологии, начали использовать биоразлагаемые пластмассы для изготовления различной упаковки. В некоторых случаях, местные и национальные законы также стимулируют использование биоразлагаемых материалов.
В отличие от большинства пластмасс, биоразлагаемые полимеры могут расщепляться в условиях окружающей среды с помощью микроорганизмов, таких как бактерии или грибки. Полимер, как правило, считается биоразлагаемым, если вся его масса разлагается в почве или воде за период в шесть месяцев. Во многих случаях продуктами распада являются углекислый газ и вода. Любые другие продукты разложения или остатки должны исследоваться на наличие токсичных веществ и безопасность.
Биоразлагаемые полимеры могут производиться из возобновляемых источников, таких как извлеченные из кукурузы сахара, или же их можно получать из нефтехимических сырьевых материалов. Они могут использоваться сами по себе или же в сочетании с другими пластмассовыми смолами и добавками.
Биоразлагаемые полимеры можно перерабатывать с помощью большинства стандартных технологий производства пластмасс, включая горячее формование, экструзию, литьевое и выдувное формование.
 
Большинство биоразлагаемых пластмасс относятся к классу полиэфиров, хотя некоторые производятся из других материалов, таких как, например, модифицированный крахмал. Обладая хорошими механическими свойствами, ароматические полиэфиры, такие как полиэтилентерефталат (polyethylene terephtalate – PET), в то же время, устойчивы к микробному воздействию. Алифатические полиэфиры, напротив, значительно легче разлагаются, но они не обладают такой прочностью, какая свойственная ароматическим полиэфирам. Для того чтобы улучшить физические свойства алифатических полиэфиров, разработчики иногда добавляли другие мономеры к их молекулярным цепям, либо алифатические, либо ароматические.
 
 
 
Фоторазрушаемые полимеры
Большая часть разработанных в настоящее время полимеров с регулируемым сроком службы представляет собой фоторазрушаемые полимеры, которые благодаря присутствию в них специальных групп или соединений способны разлагаться в естественных условиях до низкомолекулярных полимеров (молекулярная масса 1000 и меньше), поглощаемых в дальнейшем микроорганизмами атмосферы и почвы. Как правило, для придания полимерам способности разрушаться под действием света используют специальные добавки или вводят в состав полимера молекулярные светочувствительные группы. Для того чтобы такие полимеры нашли практическое применение, они должны удовлетворять определенным требованиям:
• в результате модификации полимера не должны существенно изменяться его эксплуатационные характеристики;
 
• добавки, вводимые в полимер, не должны быть токсичными, поскольку полимеры предназначаются в первую очередь для изготовления тары и упаковки;
• полимеры должны перерабатываться обычными методами, не подвергаясь при этом разложению;
 
• необходимо, чтобы изделия, полученные из таких полимеров, могли храниться и эксплуатироваться длительное время при отсутствии прямых ультрафиолетовых лучей;
 
• время от изготовления полимера до его разрушения должно быть известно; необходимо его варьирование в широких пределах;
 
• продукты разложения полимеров не должны быть токсичными.
 
С точки зрения фотохимии возможность создания фоторазрушающихся полимеров обусловливается тем, что энергия диссоциации основной связи С —- С большинства полимеров составляет 350 кДж/моль, в то время как энергия естественных ультрафиолетовых лучей находится в пределах 400—600 кДж/моль. Однако эта энергия будет направлена на разрушение полимера лишь в том случае, если, во-первых, полимер способен поглощать свет с длиной волны 400--100 нм и если, во-вторых, поглощенная энергия передается другим молекулам таким образом, чтобы они претерпели химические превращения, в результате которых происходит деструкция.
 
Упаковочные полимеры с регулируемыми сроками службы стабильны внутри помещения, так как оконное стекло абсорбирует ультрафиолетовое излучение, способное вызывать деструкцию. Стойкость материала к действию солнечного света за стеклом толщиной 7 мм в 10 раз выше, чем на открытом воздухе.
 
Одним из наиболее известных способов создания фоторазрушаемых полимеров является введение в полимерную цепь группировок, содержащих карбонильные группы.
 
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.