На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Влагозащита радиоэлектронных средств

Информация:

Тип работы: курсовая работа. Добавлен: 27.11.2012. Сдан: 2012. Страниц: 9. Уникальность по antiplagiat.ru: < 30%

Описание (план):


СОДЕРЖАНИЕ 

Введение 

1.Общие сведения  о влагозащите элементов и  конструкций РЭС 

1.1.Воздействие влаги  на материалы и электрорадиоэлементы 

1.2.Способы защиты  элементов и узлов РЭС 

1.3.Влагозащита компонентов  и блоков РЭС 

2.Методы определения  степени влагозащиты РЭС 

2.1.Экспериментальные  методы определения герметичности 

2.2.Оценочные расчеты  степени герметичности блока  РЭС 

2.3.Расчет времени  влагозащиты гермооболочки РЭС 

Список литературы 
 

Введение 

Надежная работа радиоэлектронных средств (РЭС) в условиях повышенной влажности обеспечивается на стадии их проектирования использованием влагоустойчивых электрорадиоэлементов, материалов, покрытий и специальных конструкторско-технологических приемов. Если при конструировании РЭС не предприняты специальные меры, то воздействие повышенной влажности будет сильно влиять на параметры РЭС или даже приводить к полному выходу ее из строя. 
 

1. ОБЩИЕ СВЕДЕНИЯ  О ВЛАГОЗАЩИТЕ ЭЛЕМЕНТОВ И  КОНСТРУКЦИЙ РЭС 

1.1. Воздействие влаги  на материалы и электрорадиоэлементы 

В процессе производства, хранения и эксплуатации РЭС могут подвергаться воздействию влаги, содержащейся в окружающем пространстве, внутренней среде гермоблоков, материалах конструкции, а также в используемых при изготовлении РЭС материалах. 

Наличие влаги во внутренней среде гермокорпуса РЭС обусловлено следующими причинами:  

1) проникновением  ее через микропоры из внешней  среды; 

2) невозможностью  полной осушки (без влагопоглотителя) среды заполнения (например, точка  росы газообразного азота после  централизованной осушки составляет -70°С); 

3) наличием влаги  в конструкционных материалах  гермокорпуса. 

Значительно увеличивают  содержание влаги полимерные материалы, использование которых в конструкции  РЭС обусловлено экономическими соображениями (уменьшение трудоемкости сборки, расхода материалов и энергии). В процессе производства и хранения полимерные материалы поглощают влагу из окружающей среды, а при нагреве эта влага выделяется во внутреннюю среду гермокорпуса. 

Полимерные материалы  применят для герметизации соединителей, контровки резьбовых соединений, в качестве демпфирующих и виброизолирующих слоев, для маркировки, выполнения неразъемных соединений при сборке узлов из деталей и компонентов, изготовленных из различных материалов (металлов, сплавов, керамики, ферритов, резин, пластмасс и т.д.) и различного конструктивного исполнения (печатные платы и шлейфы, объемные проводники, экраны, влагозащитные и теплоотводящие конструкции и т.д.). Полимеры входят в состав таких конструкционных материалов, как стеклотекстолит, гетинакс, лакоткань. 

Вода (сконденсированная  влага) - полярное, химически активное вещество, легко вступающее в соединение с различными металлами и неметаллами (газами, жидкостями, твердыми веществами, инертными газами). При этом образуются гидраты, устойчивые при низких температурах. Еще более активно вода окисляется кислородом; она реагирует с фтором, хлором, соединениями углерода. Щелочные и щелочноземельные металлы разлагают воду уже при комнатной температуре. Вода является активным катализатором. Она обладает высокими диэлектрической проницаемостью в жидкой фазе (e = 79...84) и потерями (tgd): при частоте f=50 Гц tgd весьма велик; при f=105 Гц tgd = 1,6; при f=107 Гц tgd = 0,3; при f=109 Гц tgd = 0,03. При наличии примесей ионного типа вода имеет высокую проводимость (удельное сопротивление водопроводной воды составляет 106...107 Ом?м; дважды дистиллированной на воздухе воды - 108 Ом?м; перегнанной в вакууме - 1010 Ом?м). 

Воздействие влаги  на материалы и компоненты может  привести к постепенным и внезапным отказам РЭС. Увлажнение органических материалов сопровождается следующими явлениями: увеличением диэлектрической проницаемости (e) и потерь (tgd); уменьшением объемного сопротивления, электрической и механической прочности; изменением геометрических размеров и формы (короблением при удалении влаги после набухания); изменением свойств смазок. Это приводит к увеличению емкости (в том числе паразитной), уменьшению добротности контуров, снижению пробивного напряжения и появлению отказов РЭС. Постепенные отказы систем радиолокации и навигации проявляются в ухудшении точности определения координат и снижении дальности действия РЛС. У радиовещательных и телевизионных приемников снижается чувствительность и избирательность, снижаются диапазоны рабочих частот (в сторону более низких), появляется неустойчивость работы гетеродина. Внезапные отказы систем радиолокации и навигации обуславливаются электрическим пробоем, расслоением диэлектриков и т.д. При увлажнении отказы могут произойти из-за коррозии, приводящей к нарушению паяных и сварных герметизирующих швов, обрыву электромонтажных связей, увеличению сопротивления контактных пар, что ведет к увеличению шумов неразъемных и обгоранию разъемных контактов); уменьшению прочности и затруднению разборки крепежа; потускнению отражающих и разрушению защитных покрытий; увеличению износа трущихся поверхностей и т.д. 

Попадание влаги  на поверхность тонкопленочных резистивных  элементов может привести к изменению  их сопротивления (уменьшению при шунтировании влагой, увеличению при коррозии); влага в диэлектриках пленочных конденсаторов увеличивает их емкость и приводит к пробою диэлектрика; влага на поверхности полупроводниковых элементов ИС способствует скоплению на границе Si-SiO2 положительных ионов (Na+ и др.), образованию слоя накопленных зарядов в полупроводнике под влиянием поверхностных ионов и изменению параметров полупроводниковых приборов (дрейфу обратных токов, пробивных напряжений, коэффициента усиления биполярных транзисторов, порогового напряжения и крутизны передаточной характеристики МДП-транзисторов). 

Все это, как правило, приводит к полному отказу РЭС, как  негерметичных, так и герметичных, но в первом случае воздействие оказывает  внешняя среда, а во втором - и  внутренная. 

1.2. Способы влагозащиты  элементов и узлов РЭС 

Для обеспечения  надежности функционирования РЭС при  воздействии влаги требуется  применять влагозащитные конструкции, которые разделяют на две группы: монолитные и полые. Монолитные оболочки составляют неразрывное целое с  защищаемым узлом. Монолитные оболочки выполняются из органических материалов. Обычно компоненты с такой защитой предназначены для использования в негерметичных наземных РЭС, и в этом случае приходится принимать дополнительные меры для обеспечения влагозащиты электрических соединений (например, лакировать печатные платы). 

Полые влагозащитные  оболочки позволяют освободить защищаемые компоненты от механического контакта с оболочкой, что обеспечивает работу в более широком диапазоне  температур и исключает химическое взаимодействие оболочки и защищаемого компонента. Полые оболочки, особенно из неорганических материалов, обеспечивают более высокую надежность влагозащиты, но имеют значительные габариты, массу, стоимость. Наиболее эффективно использование полых оболочек для групповой герметизации бескорпусных компонентов в составе блока. 

Для защиты от влаги  компонентов и узлов с помощью  монолитных оболочек, являющихся одновременно несущей конструкцией для внешних  выводов, используются пропитка, заливка, обволакивание и опрессовка. 

Пропитка нашла  наибольшее применение для защиты от влаги обмоток электродвигателей, катушек трансформаторов и т.д. При пропитке из полостей и пор  вытесняется воздух, и они заполняются  лаком или компаундом. Это приводит к увеличению электрической и  механической прочности, улучшению теплопроводности, но одновременно увеличиваются масса, паразитная емкость. 

Заливка - это сплошная упаковка компонента или узла в изоляционную массу путем заполнения ею свободного промежутка между изделием и стенками корпуса или между изделием и заливочной формой. Для улучшения теплопроводности в заливочный компаунд иногда добавляют кварцевую пудру или прокаленный порошок оксида аллюминия, а для улучшения влагозащитных свойств можно добавлять порошок цеолита, поглощающий влагу. При выборе заливочного материала особое внимание следует обращать на близость ТКЛР материала заливки и защищаемого компонента или узла (это влияет на внутренние напряжения в компаунде), а также ТКЛР материала заливки и внешних выводов (это влияет на образование каналов проникновения влаги при изменении температуры). 

Обволакивание - применяют  для защиты от влаги печатных плат, дискретных ЭРЭ, бескорпусных полупроводниковых  приборов, микросборок. Основным преимуществом  обволакивания является высокая  экономичность, недостатками – довольно толстый и неконтролируемый слой покрытия, возможность использования только для нежестких условий эксплуатации (как и для всех видов полимерной защиты от влаги), сложность удаления попавшей под защитный слой влаги. Обволакивание печатных плат лаками и компаундами позволяет повысить пробивное напряжение работающей в наземных условиях аппаратуры. 

Опрессовка - это  защита изделия от влаги толстым  слоем полимерного материала (термореативная или термопластическая пластмасса) методом литьевого или трансферного прессования в специальных формах. Этот вид влагозащиты используют в основном для малогабаритных компонентов (ИС, ЭРЭ, микросборок), что позволяет надежно укрепить внешние выводы и создать несущую конструкцию, которая способна выдерживать механические перегрузки и пригодна для автоматизации установки компонентов на плату. При выборе материала для опрессовки необходимо учитывать его параметры e, tgd, электрическую прочность. 

Для защиты от коррозии несущих корпусных конструкционных  узлов из металлов и сплавов широко применяют монолитные пленочные металлические покрытия, нанесенные горячим способом, гальванически, путем диффузии. Толщина таких покрытий единицы – десятки микрометров. 

В ряде случаев защитное покрытие делают многослойным, например слой меди толщиной 6…10 мкм (высокая адгезия к стали), слой никеля толщиной 3…6 мкм (высокая твердость), слой хрома толщиной 0,5 мкм (антифрикционность, гидрофобность). Для защиты корпусов из алюминиевых сплавов используют многослойные покрытия, например Cu – Ni – (Sn – Bi). 

1.3. Влагозащита компонентов  и блоков РЭС 

Полые влагозащитные  оболочки применяют для защиты компонентов, блоков РЭС, ИС, микросборок, в качестве дополнительной защиты от влаги наземных РЭС на корпусированных элементах, для бортовых РЭС на бескорпусных элементах, для аппаратуры диапазона СВЧ. Применение корпусных оболочек позволяет исключить механический контакт их с защищаемым изделием, что позволяет исключить передачу изделию механических напряжений, которые могут возникнуть в них. Кроме того, устраняется химическое взаимодействие оболочки с защищаемым изделием. Одновременно часто улучшается теплоотвод (при использовании оболочек, теплопроводность которых выше теплопроводности полимеров), повышается надежность влагозащиты и обеспечивается электромагнитное экранирование (при использовании оболочки из металла или металлизированной керамики), ослабляются паразитные связи ввиду уменьшения e при замене полимера воздухом. 

Для наземных РЭС, работающих в отапливаемых помещениях можно использовать дешевые полимерные полые оболочки к пластмассовому основанию которых приклеивается пластмассовая крышка. Основной недостаток подобных оболочек заключается в возможности проникновения влаги в результате диффузии через полимерную оболочку, а также по границе вывод – пластмасса при образовании каналов из-за различия ТКЛ материала вывода и пластмассы. 

Более дорогим, но и  более надежным являются полые неразъемные  металлополимерные оболочки. Наличие  металлических крышек уменьшает  площадь, через которую может  диффундировать влага, однако по границе  вывод – полимер влага может  проникать (как в монолитных, так и в полых полимерных оболочках). Обычно время влагозащиты подобных оболочек при влажности окружающей среды 98% не превышает 10…30 сут. В условиях космоса это время может быть значительно больше. Из-за низкой теплопроводности полимеров часто для обеспечения отвода тепла используют теплоотводящие шины. Металлостеклянными полыми оболочками можно герметизировать не только компоненты, но и блоки РЭС, например бортовое РЭС одноразового действия. Для улучшения теплоотвода от бескорпусных компонентов оболочка заполнена фторсодержащим веществом. Внешние выводы изолированы от металлического корпуса с помощью стеклянных изоляторов. Соединение крышки с основанием осуществлено неразъемным паянием или сварным швом. Для блоков объемом менее 3 дм3 при необходимости обеспечения небольшого (до 3…5 раз) числа разгерметизаций и повторных герметизаций (на этапе производства при настройке или на этапе эксплуатации при ремонте) используется регенерируемый паяный или сварной шов. Такой вид герметизации обеспечивает работоспособность блоков в течении 8…12 лет. 

Для блоков, объем  которых превышает 3 дм3, целесообразно  использовать разъемные полые оболочки с прокладками, что допускает  большее истечение (натекание) газа ввиду большего объема блока (для  прокладок из лучших эластомеров  течь составляет 10-3…10-7 дм3 Па/с на метр прокладки) и позволяет значительно снизить массу блока по сравнению с массой блока, герметизированного паяным швом (при объеме блока, меньшем 3 дм3, этому мешает большая масса стягивающих болтов).
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.