На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Способы представления графической информации

Информация:

Тип работы: курсовая работа. Добавлен: 04.12.2012. Сдан: 2012. Страниц: 23. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
 
 
 
     Курсовая работа

     СПОСОБЫ ПРЕДСТАВЛЕНИЯ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ

 
     по курсу «Информатика» 
 
 
 
 

     Графическая информация

 
     Под термином графика обычно понимается визуальное (то есть воспринимаемое зрением) представление каких-либо реальных или воображаемых объектов. Графика рассматривается как язык визуальной культуры и грамотности человека, как язык проектирования (дизайна), как язык техники и технологии, как самое простое и естественное для человека средство осмысления и познания окружающего его мира и как язык профессионального (технического и художественно-технического) и непрофессионального общения между людьми. Она является средством развития творческих способностей учащегося, его пространственных представлений, воображения и мышления, глазомера, зрительной памяти, смекалки и догадки, средством развития политехнического и образного мышления, эстетического вкуса и проектного мышления, средством выражения его идей и замыслов.
     Информация, описываемая графическими объектами, соответственно называется графической. Она может быть представлена, картиной, рисунком, мозаикой, чертежом, буквами в книге, изображением на экране телевизора и др. Для представления графической информации в виде всякого графического изображения, существует свой определенный способ создания: картину можно нарисовать кистью отдельными мазками, контур рисунка очертить фломастером и закрасить его акварелью, а чертеж выполнить линиями, проведенными карандашом. В последние десятилетия самым популярным и распространенным способом представления графической информации становится цифровой метод, где графические данные хранятся неопределенное время в виде файлов на цифровых носителях, а визуализация наступает, когда данные файлов поступают на устройства вывода: монитор принтер, плоттер и др.
     Такие методы, средства создания, обработки и визуализации графической и информации с помощью программно-аппаратных вычислительных комплексов изучает специальная область информатики - компьютерная графика.
     Компьютерная графика охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.
     В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую и векторную. Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.
     Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие. На стыке компьютерных, телевизионных и кинотехнологий зародилась и стремительно развивается сравнительно новая область компьютерной графики и анимации.

     Представление графических данных

     Растровая графика

 
     Растровая графика оперирует с изображениями в виде растров. Неформально можно сказать, что растр - это описание изображения на плоскости путем разбиения всей плоскости или ее части на одинаковые квадраты и присвоение каждому квадрату своего атрибута. Иногда понятие растра определяют более широко: как разбиение плоскости (или ее участка) на равные элементы (т.е. "замощение"). Такие элементы растра называются пикселями (pixel - picture element). Каждому пикселю может быть задан определенный атрибут, это, как правило, цвет или яркость. В растровой графике пиксели выстраиваются в виде прямоугольной матрицы (bitmap), где из них, как из крохотных точек собрано мозаичное изображение. Благодаря маленькому размеру и большой концентрации таких пикселей-точек, отдельные точки становятся невидны (или малозаметны), и создаётся впечатление однородной картины.
     Растровый способ представления изображений прекрасно подходит для хранения фотографий и видеофрагментов и позволяет создать (воспроизвести) практически любой рисунок, вне зависимости от сложности.

     Векторная графика

 
     Другой способ представления графической информации в компьютере векторная графика (или геометрическое моделирование). Элементарными объектами векторной графики являются простые геометрические фигуры, такие как линия, окружность, которые хранятся в памяти компьютера в виде математических формул и числовых параметров. Из простейших фигур складываются более сложные. Каждая фигура обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием. Охватываемое фигурами пространство может быть заполнено другими объектами (текстуры, карты), цветом или особым способом (например, заштрихована).
     Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет -- трассировка растра обычно не обеспечивает высокого качества векторного рисунка.
     Векторная графика используется для создания иллюстраций и рисунков в издательском деле, карт в компьютерной топографии (геоинформационных системах). СAD-системы (системы автоматизированного проектирования) используют векторный подход для рисования чертежей.
     При помощи векторной графики можно задать не только двумерные, но и трёхмерные фигуры. Все современные редакторы трёхмерной графики являются векторными, и лишь при создании итогового изображения или видеоролика происходит преобразование в растровую графику.
     Векторное изображение проще анимировать, поэтому, сегодня векторная графика используется для создания анимации и компьютерных игр. Например, программа Macromedia Flash, предназначенная для создания анимации на веб-страницах, основана на векторном представлении графики, хотя и поддерживает использование растровых изображений.
     Необходимо отметить, что в процессе визуализации векторная графика всегда преобразовывается в растровую форму.

     Достоинства и недостатки растровой и векторной графики

     Каждый из видов графики имеет свои достоинства и недостатки, следует отметить определенную "зеркальность" их достоинств и недостатков.
     Среди достоинств растровой графики можно рассматривать два принципиальных и одно относительное:
     аппаратная реализуемость;
     программная независимость;
     фотореалистичность изображений.
     Следуют обратить особое внимание на недостатки растровой графики:
     значительный объем файлов;
     трансформирования с потерей качества (пикселизация, зернистость);
     аппаратная зависимость -- причина многих погрешностей;
     отсутствие объектов.
     Достоинства и недостатки растровой графики являются зеркальным отражением достоинств и недостатков векторной графики.
     Достоинства:
     минимальный объем файла,
     полная свобода трансформаций;
     аппаратная независимость;
     объектно-ориентированный характер.
     Два принципиальных и один условный недостаток векторной графики:
     отсутствие аппаратной реализуемости;
     программная зависимость;
     жесткость изображений.

     Представление цвета

     Системы цвета

 
     Некоторые предметы видимы потому, что излучают свет, а другие - потому, что его отражают. Когда предметы излучают свет, они приобретают в нашем восприятии тот цвет, который видит глаз человека. Когда предметы отражают свет, то их цвет определяется цветом падающего на них света и цветом, который эти объекты отражают. Излучаемый свет выходит из активного источника, например, экрана монитора. Отраженный свет отражается на поверхности объекта, например, листа бумаги. Поэтому существуют два метода описания цвета: система аддитивных и субтрактивных цветов.
     Аддитивный цвет (от англ. add -- добавлять, складывать) получается при соединении лучей света разных цветов. В этой системе отсутствие всех цветов представляет собой черный цвет, а присутствие всех цветов -- белый. Система аддитивных цветов (RGB) работает с излучаемым светом, например, от монитора компьютера. В этой системе используются три основных цвета: красный (Red), зеленый (Green) и синий (Blue). Если их смешать друг с другом в равной пропорции, они образуют белый цвет, а при смешивании в разных пропорциях -- любой другой.
     В системе субтрактивных цветов (от англ. subtract -- вычитать) происходит обратный процесс: вы получаете какой-либо цвет, вычитая другие цвета из общего луча отраженного света. В этой системе белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие дает черный цвет. Система субтрактивных цветов работает с отраженным светом, например, от листа бумаги. Белая бумага отражает все цвета, окрашенная -- некоторые поглощает, а остальные отражает. В системе субтрактивных цветов основными являются голубой, пурпурный и желтый цвета (CMY) -- противоположные красному, зеленому и синему. Когда эти цвета смешиваются на белой бумаге в равной пропорции, получается черный цвет. То есть, предполагается, что должен получиться черный цвет. В действительности типографские краски поглощают свет не полностью, поэтому комбинация трех основных цветов выглядит темно-коричневой. Чтобы исправить возникающую неточность, для представления тонов истинно черного принтеры добавляют немного черной краски. Систему цветов, основанную на таком процессе четырехцветной печати, принято обозначать аббревиатурой CMYK.

     Цветовая модель RGB

 
     Монитор компьютера создает цвет непосредственно излучением света и использует, таким образом, систему цветов RGB. Поверхность монитора представляет растр из мельчайших точек красного, зеленого и синего цветов, форма точек варьируется в зависимости от типа электронно-лучевой трубки (ЭЛТ). Пушка ЭЛТ подает сигнал различной мощности на экранные пиксели. Каждая точка имеет один из трех цветов, при попадании на нее луча из пушки, она окрашивается в определенный оттенок своего цвета, в зависимости от силы сигнала. Поскольку точки маленькие, уже с небольшого расстояния они визуально смешиваются друг с другом и перестают быть различимы. Комбинируя различные значения основных цветов, можно создать любой оттенок более чем из 16 миллионов доступных в RGB.
     Лампа сканера светит на поверхность захватываемого изображения (или сквозь слайд); отраженный или прошедший через слайд свет, с помощью системы зеркал, попадает на чувствительные датчики, которые передают данные в компьютер так же в системе RGB.
     Система RGB адекватна цветовому восприятию человеческого глаза, рецепторы которого тоже настроены на красный, зеленый и синий цвета.

     Цветовая модель CMYK

 
     Система цветов CMYK была широко известна задолго до того, как компьютеры стали использоваться для создания графических изображений. Триада основных печатных цветов: голубой (Cyan), пурпурный (Magenta) и желтый (Yellow) является, по сути, наследником трех основных цветов живописи (синего, красного и желтого). Изменение оттенка первых двух связано с отличным от художественных химическим составом печатных красок, но принцип смешения тот же самый. И художественные, и печатные краски, несмотря на провозглашаемую самодостаточность, не могут дать очень многих оттенков. Поэтому художники используют дополнительные краски на основе чистых пигментов, а печатники добавляют, как минимум, черную краску.
     Система CMYK создана и используется для печати. Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK. Этот процесс называется цветоделением.

     Цветовая модель HSB

 
     Системы цветов RGB и CMYK базируются на ограничениях, накладываемых аппаратным обеспечением (мониторами и сканерами в случае с RGB и типографскими красками в случае с CMYK). Более интуитивным способом описания цвета является представление его в виде тона, насыщенности и яркости -- система HSB (Hue Saturation Brightness - тон, насыщенность, яркость). Она же известна как системы HSL (Hue Saturation Lightness - тон, насыщенность, освещенность) и HSV (Hue Saturation Value - тон, насыщенность, яркость).
     Тон представляет собой конкретный оттенок цвета, отличный от других: красный, зеленый, голубой и т. п. Насыщенность цвета характеризует его относительную интенсивность (или чистоту). Уменьшая насыщенность, например, красного, мы делаем его более пастельным, приближаем к серому. Яркость (или освещенность) цвета показывает величину черного оттенка, добавленного к цвету, что делает его более темным.
     Система HSB имеет перед другими системами важное преимущество: она больше соответствует природе цвета, хорошо согласуется с моделью восприятия цвета человеком.

     Цветовая модель CIE Lab

 
     В 1920 году была разработана цветовая пространственная модель CIE Lab (Communication Internationale de I'Eclairage - международная комиссия по совещанию. L, a, b - обозначения осей координат в этой системе). Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими. Цветовое пространство LAB представляет цвет в трех каналах: один канал выделен для значений яркости (L - Lightness) и два других - для цветовой информации (А и В). Цветовые каналы соответствуют шкале, а не какому-нибудь одному цвету. Канал А представляет непрерывный спектр от зеленого к красному, в то время как канал В - от синего к желтому. Средние значения для А и В соответствуют реальным оттенкам серого.
     Множественность моделей говорит о сложности попыток представления цвета. Несмотря на явные достижения и практическое использование работа в этом направлении продолжается в связи с постоянным повышением требований к качеству воспроизведения изображений при экранной демонстрации и получении печатной продукции.

     Кодирование цвета

 
     Кодируется цвет графических изображений с помощью бит. Количество бит, с помощью которых закодирован цвет называют битовой глубиной изображения. Обычно принимают глубину в 1, 4, 8, 16, 24 и 32 бита, что соответствует (21,24,28,216,224, 232) 2, 16, 256, 65.536 (High color), 16.777.216 (True color), 4.294.967.296 возможным цветовым оттенкам. Кодирование осуществляется в соответствии с определенной цветовой моделью. В RGB для каждого из трех цветов выделяется канал в 1 байт (8 бит), где интенсивность каждого из цветов может принимать значения от 0 до 255.

     Разрешение

 
     Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:
     разрешение оригинала;
     разрешение экранного изображения;
     разрешение печатного изображения.

     Разрешение оригинала

 
     Разрешение оригинала измеряется в точках на дюйм (dots per inch - dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

     Разрешение экранного изображения.

 
     Для экранных копий изображения элементарную точку растра принято называть пикселем. Размер пикселя варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения.
     Мониторы для обработки изображений с диагональю 20-21 дюйм, как правило, обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768,1280х1024,1600х1200,1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22 - 0,25 мм. Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.

     Разрешение печатного изображения

 
     Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch - lpi) и называется линиатурой.
     Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале, приближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра. Такой метод называют растрированием с амплитудной модуляцией.
     При выводе копии изображения на принтере или полиграфическом оборудовании линиатуру растра выбирают, исходя из компромисса между требуемым качеством, возможностями аппаратуры и параметрами печатных материалов
     Для лазерных принтеров рекомендуемая линиатура составляет 65 - 100 lpi, для газетного производства - 65-85 lpi, для книжно-журнального - 85 - 133 lpi, для художественных и рекламных работ - 133 - 300 lpi.
     При печати изображений с наложением растров друг на друга, например многоцветных, каждый последующий растр поворачивается на определенный угол. Традиционными для цветной печати считаются углы поворота: 105 градусов для голубой печатной формы, 75 градусов для пурпурной, 90 градусов для желтой и 45 градусов для черной. При этом ячейка растра становится косоугольной, и для воспроизведения 256 градаций тона с линиатурой 150 lpi уже недостаточно разрешения 16*150=2400 dpi. Поэтому для фотоэкспонирующих устройств профессионального класса принято минимальное стандартное разрешение 2540 dpi, обеспечивающее качественное растрирование при разных углах поворота растра.

     Масштабирование

 
     Масштабирование заключается в изменении вертикального и горизонтального размеров изображения. Масштабирование может быть пропорциональным - в этом случае соотношение между высотой и шириной рисунка не изменяется, а меняется общий размер, и непропорциональным - в этом случае оба измерения изменяются по-разному.
     Масштабирование векторных рисунков выполняется просто и без потери качества. Так как объекты векторной графики создаются по их описаниям, то для изменения масштаба векторного объекта, достаточно изменить его описание. Например, чтобы увеличить в два раза векторный объект, следует удвоить значение, описывающее его размер.
     Масштабирование растровых рисунков является намного более сложным процессом, чем для векторной графики, и часто сопровождается потерей качества. При изменении размеров растрового изображения выполняется одно из следующих действий:
     одновременное изменение размеров всех пикселов (в большую или меньшую сторону);
     добавление или убавление пикселов из рисунка для отражения производимых в нем изменений, называемых выборкой пикселов в изображении.
     По своей сути масштабирование не меняет физические размеры графического файла, поскольку не воздействует ни на один из параметров (число точек, глубина цвета), от которых зависит его значение, а только меняет экранное или печатное разрешение изображения.

     Дискретизация

 
     В отличие от масштабирования дискретизация - это операция, которая вмешивается в структуру изображения, изменяя число точек.
     В растровой графике получили распространение три основных метода дискретизации, которые различаются между собой скоростью работы и точностью результатов.
     Nearest Neighbor (Метод ближайшего соседа). Самый простой метод интерполяции, обладающий высокой скоростью работы и результатами не самого высокого качества. В качестве образца для нового пикселя берутся характеристики его ближайшего фактического соседа. Метод дает неплохие результаты для областей с регулярной геометрией, например прямых линий, прямоугольников и пр.
     Bilinear (Билинейная интерполяция). Этот метод несколько сложнее в реализации, но дает лучшие результаты по сравнению с методом Nearest Neighbor. Параметры новой точки рассчитываются усреднением цветовых или тоновых характеристик соседних действительных пикселов изображения. Свои преимущества метод показывает при уменьшении количества точек изображения. Рациональной областью его применения является обработка изображений среднего качества. Bicubic (Бикубическая интерполяция). Это лучший метод интерполяции. Новые точки рассчитываются по существующим соседям на основе несколько более сложных алгоритмов, чем в предыдущем методе.В результате дискретизация выполняет глубокую перестройку изображения, при определенных условиях воздействуя на каждый его пиксель.

     Форматы графических файлов

 
     Данные об изображении хранятся в графических файлах. Эти файлы организованы определенным образом. К примеру, для растрового изображения в файле необходимо хранить информацию о цвете для каждого пикселя, а так же порядок и количество пикселей по ширине и высоте. Для векторного же изображения в файле необходимо хранить лишь координаты и задаваемые параметры примитивов, фигур и объектов и взаимосвязи между ними.
     Такие способы хранения информации в файле, а также форму хранения информации (используемый алгоритм сжатия) определяют форматы графических файлов. Сжатие применяется для растровых графических файлов, так как они имеют достаточно большой объем. Существуют различные алгоритмы сжатия, причем для различных типов изображения целесообразно применять подходящие типы алгоритмов сжатия.

     Формат BMP

 
     Формат BMP (Windows Bitmap - растровое изображение Windows) является собственным форматом графического редактора Microsoft Paint, поставляемого вместе с операционной системой Windows. Он поддерживается многими приложениями DOS, Windows и OS/2, но не поддерживается Mac OS. Формат BMP допускает применение алгоритма последовательного сжатия без потерь RLE и может представлять до 16 млн. цветов. Однако не все графические программы распознают сжатые BMP-файлы. Несжатые BMP-файлы имеют большой объем. Файлы данного формата имеют расширение bmp.
     Обычно BMP-файлы используются для иллюстраций в справочных системах, пиктограмм, а также в качестве так называемых обоев (фоновой картинки) для рабочего стола Windows.

     Формат GIF (CompuServe Graphics Interchange Format)

 
     Независящий от аппаратного обеспечения формат GIF был разработан в 1987 году фирмой CompuServe для передачи растровых изображений по сетям. GIF использует LZW-компрессию, что позволяет неплохо сжимать файлы, в которых много однородных заливок (логотипы, надписи, схемы).
     Метод сжатия LZW (Lempel-Ziv-Welch) разработан в 1978 году израильтянами Лемпелом и Зивом и доработан позднее в США. Сжимает данные путем поиска одинаковых последовательностей (они называются фразы) во всем файле. Выявленные последовательности сохраняются в таблице, им присваиваются более короткие маркеры (ключи). Так, если в изображении имеются наборы из розового, оранжевого и зеленого пикселов, повторяющиеся 50 раз, LZW выявляет это, присваивает данному набору отдельное число (например, 7) и затем сохраняет эти данные 50 раз в виде числа 7.
     GIF позволяет записывать изображение "через строчку" (Interlaced), благодаря чему, имея только часть файла, можно увидеть изображение целиком, но с меньшим разрешением. Это достигается за счет записи, а затем подгрузки, сначала 1, 5, 10 и т.д. строчек пикселов и растягивания данных между ними, вторым проходом следуют 2, 6, 11 строчки, разрешение изображения в интернетовском браузере увеличивается. Таким образом, задолго до окончания загрузки файла может понять содержимое изображения. Чересстрочная запись незначительно увеличивает размер файла, но это, как правило, оправдывается приобретаемым свойством.
     В GIF'e можно назначить один или более цветов прозрачными, они станут невидимыми в интернетовских браузерах и некоторых других программах. Прозрачность обеспечивается за счет дополнительного Alpha-канала, сохраняемого вместе с файлом. Кроме того файл GIF может содержать не одну, а несколько растровых картинок, которые браузеры могут подгружать одну за другой с указанной в файле частотой. Так достигается иллюзия движения (GIF-анимация).
     Основное ограничение формата GIF состоит в том, что цветное изображение может быть записано только в режиме 256 цветов.

     Формат JPG (jpeg) (Joint Photographic Experts Group)

 
     Строго говоря, JPEG'ом называется не формат, а алгоритм сжатия, основанный не на поиске одинаковых элементов, как в RLE и LZW, а на разнице между пикселями. Кодирование данных происходит в несколько этапов. Сначала графические данные конвертируются в цветовое пространство типа LAB, затем отбрасывается половина или три четверти информации о цвете (в зависимости от реализации алгоритма). Далее анализируются блоки 8х8 пикселов. Для каждого блока формируется набор чисел. Первые несколько чисел представляют цвет блока в целом, в то время, как последующие числа отражают тонкие детали. Спектр деталей базируется на зрительном восприятии человека, поэтому крупные детали более заметны.
     На следующем этапе, в зависимости от выбранного уровня качества, отбрасывается определенная часть чисел, представляющих тонкие детали. На последнем этапе используется кодирование методом Хаффмана для более эффективного сжатия конечных данных. Восстановление данных происходит в обратном порядке.
     Таким образом, чем выше уровень компрессии, тем больше данных отбрасывается, тем ниже качество. Используя JPEG можно получить файл в 1 500 раз меньше, чем ВМР. Формат аппаратно независим, полностью поддерживается на РС и Macintosh, однако он относительно нов и не понимается старыми программами (до 1995 года). JPEG не поддерживает индексированные палитры цветов.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.