На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Предмет и задачи астрономии. Особенности астрономических наблюдений. Принцип действия телескопа. Видимое суточное движение звезд. Что такое созвездие, его виды. Эклиптика и блуждающие светила-планеты. Звездные карты, небесные координаты и время.

Информация:

Тип работы: Реферат. Предмет: Астрономия. Добавлен: 26.09.2014. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Реферат
«Основные понятия астрономии»
1. Предмет астрономии

Астрономия - наука, изучающая движение, строение, происхождение и развитие небесных тел и их систем. Накопленные ею знания применяются для практических нужд человечества.
Астрономия является одной из древнейших наук, она возникла на основе практических потребностей человека и развивалась вместе с ними. Элементарные астрономические сведения были известны уже тысячи лет назад в Вавилоне, Египте, Китае и применялись народами этих стран для измерения времени и ориентировки по сторонам горизонта.
И в наше время астрономия используется для определения точного времени и географических координат (в навигации, авиации, космонавтике, геодезии, картографии). Астрономия помогает исследованию и освоению космического пространства, развитию космонавтики и изучению нашей планеты из космоса. Но этим далеко не исчерпываются решаемые ею задачи.
Наша Земля является частью Вселенной. Луна и Солнце вызывают на ней приливы и отливы. Солнечное излучение и его изменения влияют на процессы в земной атмосфере и на жизнедеятельность организмов. Механизмы влияния различных космических тел на Землю также изучает астрономия.
Современная астрономия тесно связана с математикой и физикой, с биологией и химией, с географией, геологией и с космонавтикой. Используя достижения других наук, она в свою очередь обогащает их, стимулирует их развитие, выдвигая перед ними все новые задачи. Астрономия изучает в космосе вещество в таких состояниях и масштабах, какие неосуществимы в лабораториях, и этим расширяет физическую картину мира, наши представления о материи. Все это важно для развития диалектико-материалистического представления о природе.
Научившись предвычислять наступление затмений Солнца и Луны, появление комет, астрономия положила начало борьбе с религиозными предрассудками. Показывая возможность естественнонаучного объяснения возникновения и изменения Земли и других небесных тел, астрономия способствует развитию марксистской философии.
Курс астрономии завершает физико-математическое и естественнонаучное образование, получаемое вами в школе.
Изучая астрономию, необходимо обращать внимание на то, какие сведения являются достоверными фактами, а какие - научными предположениями, которые со временем могут измениться. Важно, что предела человеческому познанию нет. Вот один из примеров того, как это показывает жизнь.
В прошлом веке один философ-идеалист решился утверждать, что возможности человеческого познания ограничены. Он говорил, что, хотя люди и измерили расстояния до некоторых светил, химический состав звезд они никогда не смогут определить. Однако вскоре был открыт спектральный анализ, и астрономы не только установили химический состав атмосфер звезд, но и определили их температуру. Несостоятельными оказались и многие другие попытки указать границы человеческого познания. Так, ученые сначала теоретически оценили температуру на Луне, затем измерили ее с Земли при помощи термоэлемента и радиометодов, потом эти данные получили подтверждение от приборов автоматических станций, изготовленных и посланных людьми на Луну.
2. Астрономические наблюдения и телескопы
Особенности астрономических наблюдений
В основе астрономии лежат наблюдения, производимые с Земли и лишь с 60-х годов нашего века, выполняемые из космоса - с автоматических и других космических станций и даже с Луны. Аппараты сделали возможным получение проб лунного грунта, доставку разных приборов и даже высадку людей на Луну. Но так пока можно исследовать только ближайшие к Земле небесные светила. Играя такую же роль, как опыты в физике и химии, наблюдения в астрономии имеют ряд особенностей.
Первая особенность состоит в том, что астрономические наблюдения в большинстве случаев пассивны по отношению к изучаемым объектам. Мы не можем активно влиять на небесные тела, ставить опыты (за исключением редких случаев), как это делают в физике, биологии, химии. Лишь использование космических аппаратов дало в этом отношении некоторые возможности.
Кроме того, многие небесные явления протекают столь медленно, что наблюдения их требуют громадных сроков; так, например, изменение наклона земной оси к плоскости ее орбиты становится заметным лишь по истечении сотен лет. Поэтому для нас не потеряли своего значения некоторые наблюдения, производившиеся в Вавилоне и в Китае тысячи лет назад они и были, по современным понятиям, очень неточными.
Вторая особенность астрономических наблюдений состоит в следующем. Мы наблюдаем положение небесных тел и их движение с Земли, которая сама находится в движении. Поэтому вид неба для земного наблюдателя зависит не только от того, в каком месте Земли он находится, но и от того, в какое время суток и года он наблюдает. Например, когда у нас зимний день, в Южной Америке летняя ночь, и наоборот. Есть звезды, видимые лишь летом или зимой.
Третья особенность астрономических наблюдений связана с тем, что все светила находятся от нас очень далеко, так далеко, что ни на глаз, ни в телескоп нельзя решить, какое из них ближе, какое дальше. Все они кажутся нам одинаково далекими. Поэтому при наблюдениях обычно выполняют угловые измерения и уже по ним часто делают выводы о линейных расстояниях и размерах тел.
Расстояние между объектами на небе (например, звездами) измеряют углом, образованным лучами, идущими к объектам из точки наблюдения. Такое расстояние называется угловым и выражается в градусах и его долях. При этом считается, что две звезды находятся недалеко друг от друга на небе, если близки друг другу направления, по которым мы их видим (рис. 1, звезды А и В). Возможно, что третья звезда С, на небе более далекая от Л, в пространстве к А ближе, чем звезда В.
Измерения высоты, углового расстояния объекта от горизонта, выполняют специальными угломерными оптическими инструментами, например теодолитом. Теодолит - это инструмент, основной частью которого служит зрительная труба, вращающаяся около вертикальной и горизонтальной осей (рис. 2). С осями скреплены круги, разделенные на градусы и минуты дуги. По этим кругам отсчитывают направление зрительной трубы. На кораблях и на самолетах угловые измерения выполняют прибором, называемым секстантом (секстаном).
Видимые размеры небесных объектов также можно выразить в угловых единицах. Диаметры Солнца и Луны в угловой мере примерно одинаковы - около 0,5°, а в линейных единицах Солнце больше Луны по диаметру примерно в 400 раз, но оно во столько же раз от Земли дальше. Поэтому их угловые диаметры для нас почти равны.
Ваши наблюдения
Для лучшего усвоения астрономии вы должны как можно раньше приступить к наблюдениям небесных явлений и светил. Указания к наблюдениям невооруженным глазом даны в приложении VI. Нахождение созвездий, ориентировку на местности по Полярной звезде, знакомую вам из курса физической географии, и наблюдение суточного вращения неба удобно выполнять с помощью подвижной карты звездного неба, приложенной к учебнику. Для приближенной оценки угловых расстояний на небе полезно знать, что угловое расстояние между двумя звездами «ковша» Большой Медведицы равно примерно 5°.
Прежде всего, надо ознакомиться с видом звездного неба, найти на нем планеты и убедиться в их перемещении относительно звезд или Солнца в течение 1-2 месяцев. (Об условиях видимости планет и некоторых небесных явлениях говорится в школьном астрономическом календаре на данный год.) Наряду с этим надо ознакомиться в телескоп с рельефом Луны, с солнечными пятнами, а затем уже и с другими светилами и явлениями, о которых сказано в приложении VI. Для этого ниже дается представление о телескопе.
Телескопы
Основным астрономическим прибором является телескоп. Телескоп с объективом из вогнутого зеркала называется рефлектором, а телескоп с объективом из линз - рефрактором.
Назначение телескопа - собрать больше света от небесных источников и увеличить угол зрения, под которым виден небесный объект.
Количество света, которое попадает в телескоп от наблюдаемого объекта, пропорционально площади объектива. Чем больше размер объектива телескопа, тем более слабые светящиеся объекты в него можно увидеть.
Масштаб изображения, даваемого объективом телескопа, пропорционален фокусному расстоянию объектива, т.е. расстоянию от объектива, собирающего свет, до той плоскости, где получается изображение светила. Изображение небесного объекта можно фотографировать или рассматривать через окуляр (рис. 7).
Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, а также - угловые расстояния между звездами, но звезды даже в очень сильный телескоп из-за огромной удаленности видны лишь как светящиеся точки.
В рефракторе лучи, пройдя через объектив, преломляются, образуя изображение объекта в фокальной плоскости (рис. 7, а). В рефлекторе лучи от вогнутого зеркала отражаются и потом также собираются в фокальной плоскости (рис. 7, б). При изготовлении объектива телескопа стремятся свести к минимуму все искажения, которыми неизбежно обладает изображение объектов. Простая линза сильно искажает и окрашивает края изображения. Для уменьшения этих недостатков объектив изготовляют из нескольких линз с разной кривизной поверхностей и из разных сортов стекла. Поверхности вогнутого стеклянного зеркала, которая серебрится или алюминируется, придают для уменьшения искажений не сферическую форму, а несколько иную (параболическую).
Советский оптик Д.Д. Максутов разработал систему телескопа, называемую менисковой. Она соединяет в себе достоинства рефрактора и рефлектора. По этой системе устроена одна из моделей школьного телескопа. Тонкое выпукло-вогнутое стекло - мениск - исправляет искажения, даваемые большим сферическим зеркалом. Лучи, отразившиеся от зеркала, отражаются затем от посеребренной площадки на внутренней поверхности мениска и идут в окуляр, являющийся усовершенствованной лупой. Существуют и другие телескопические системы.
В телескопе получается перевернутое изображение, но это не имеет никакого значения при наблюдении космических объектов.
При наблюдениях в телескоп редко используются увеличения свыше 500 раз. Причина этого - воздушные течения, вызывающие искажения изображения, которые тем заметнее, чем больше увеличение телескопа.
Самый большой рефрактор имеет объектив диаметром около 1 м. Наибольший в мире рефлектор с диаметром вогнутого зеркала 6 м изготовлен в СССР и установлен в горах Кавказа. Он позволяет фотографировать звезды в 10 раз более слабые, чем видимые невооруженным глазом.
3. Созвездие. Видимое движение звезд
Созвездия
Знакомиться со звездным небом надо в безоблачную ночь, когда свет Луны не мешает наблюдать слабые звезды. Прекрасна картина ночного неба с рассыпанными по нему мерцающими звездами. Число их кажется бесконечным. Но так только, кажется, пока вы не приглядитесь и не научитесь находить на небе знакомые группы звезд, неизменных по своему взаимному расположению. Эти группы, названные созвездиями, люди выделили тысячи лет назад. Под созвездием понимают всю область неба в пределах некоторых установленных границ. Все небо разделено на 88 созвездий, которые можно находить по характерному для них расположению звезд.
Многие созвездия сохраняют свое название с глубокой древности. Некоторые названия связаны с греческой мифологией, например Андромеда, Персей, Пегас, некоторые - с предметами, которые напоминают фигуры, образуемые яркими звездами созвездий (Стрела, Треугольник, Весы и др.). Есть созвездия, названные именами животных (например, Лев, Рак, Скорпион).
Созвездия на небосводе находят, мысленно соединяя их ярчайшие звезды прямыми линиями в некоторую фигуру, как показано на звездных картах. В каждом созвездии яркие звезды издавна обозначали греческими буквами, чаще всего самую яркую звезду созвездия - буквой б, затем буквами в, г и т.д. в порядке алфавита по мере убывания яркости; например, Полярная звезда есть, а созвездия Малой Медведицы
Невооруженным глазом в безлунную ночь можно видеть над горизонтом около 3000 звезд. В настоящее время астрономы определили точное местоположение нескольких миллионов звезд, измерили приходящие от них потоки энергии и составили списки-каталоги этих звезд.
Яркость и цвет звезд
Днем небо кажется голубым оттого, что неоднородности воздушной среды сильнее всего рассеивают голубые лучи солнечного света.
Вне пределов земной атмосферы небо всегда черное, и на нем можно наблюдать звезды и Солнце одновременно.
Звезды имеют разную яркость и цвет: белый, желтый, красноватый. Чем краснее звезда, тем она холоднее. Наше Солнце относится к желтым звездам. Ярким звездам древние арабы дали собственные имена.
Белые звезды: Бега в созвездии Лиры, Альтаир в созвездии Орла (видны летом и осенью). Сириус - ярчайшая звезда неба (видна зимой); красные звезды: Бетельгейзе в созвездии Ориона и Альдебаран в созвездии Тельца (видны зимой), Антарес в созвездии Скорпиона (виден летом); желтая Капелла в созвездии Возничего (видна зимой).
Самые яркие звезды еще в древности назвали звездами 1-й величины, а самые слабые, видимые на пределе зрения для невооруженного глаза, - звездами 6-й величины. Эта старинная терминология сохранилась и в настоящее время. К истинным размерам звезд термин «звездная величина» отношения не имеет, она характеризует световой поток, приходящий на Землю от звезды. Принято, что при разности в одну звездную величину яркость звезд отличается примерно в 2,5 раза. Разность в 5 звездных величин соответствует различию в яркости ровно в 100 раз. Так, звезды 1-й величины в 100 раз ярче звезд 6-й величины.
Современные методы наблюдений дают возможность обнаружить звезды примерно до 25-й звездной величины. Измерения показали, что звезды могут иметь дробные или отрицательные звездные величины, например: для Альдебарана звездная величина m = 1,06, для Веги m = 0,14, для Сириуса m = - 1,58, для Солнца m = - 26,80.
Видимое суточное движение звезд. Небесная сфера
Из-за осевого вращения Земли звезды нам кажутся перемещающимися по небу. При внимательном наблюдении можно заметить» что Полярная звезда почти не меняет положения относительно горизонта.
Все же другие звезды описывают в течение суток полные круги с центром вблизи Полярной. В этом можно легко убедиться, проделав следующий опыт. Фотоаппарат, установленный на «бесконечность», направим на Полярную звезду и надежно укрепим в этом положении. Откроем затвор при полностью открытом объективе на полчаса или час. Проявив сфотографированный таким образом снимок, увидим на нем концентрические дуги - следы путей звезд. Общий центр этих дуг - точка, которая остается неподвижной при суточном движении звезд, условно называется северным полюсом мира. Полярная звезда к нему очень близка. Диаметрально противоположная ему точка называется южным полюсом мира. В северном полушарии он находится под горизонтом.
Явления суточного движения звезд удобно изучать, воспользовавшись математическим построением - небесной сферой, т.е. воображаемой сферой произвольного радиуса, центр которой находится в точке наблюдения. На поверхность этой сферы проецируют видимые положения всех светил, а для удобства измерений строят ряд точек и линий. Так, отвесная линия ZCZґ проходящая через наблюдателя, пересекает небо над головой в точке зенита Z. Диаметрально противоположная точка Zґ называется надиром. Плоскость (NESW), перпендикулярная отвесной линии ZZґ является плоскостью горизонта - эта плоскость касается поверхности земного шара в точке, где расположен наблюдатель. Она делит поверхность небесной сферы на две полусферы: видимую, все точки которой находятся над горизонтом, и невидимую, точки которой лежат под горизонтом.
Ось видимого вращения небесной сферы, соединяющую оба полюса мира и Р') и проходящую через наблюдателя (С), называют осью мира. Ось мира для любого наблюдателя всегда будет параллельна оси вращения Земли. На горизонте под северным полюсом мира лежит точка севера N, диаметрально противоположная ей точка S - точка юга. Линия NS называется полуденной линией, так как по ней на горизонтальной плоскости в полдень падает тень от вертикально поставленного стержня. (Как на местности провести полуденную линию и как по ней и по Полярной звезде ориентироваться по сторонам горизонта, вы из и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.