На бирже курсовых и дипломных проектов можно найти готовые бесплатные и платные работы или заказать написание уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов по самым низким ценам. Добавив заявку на написание требуемой для вас работы, вы узнаете реальную стоимость ее выполнения.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Быстрая помощь студентам

 

Результат поиска


Наименование:


Контрольная Болезни, вызываемые вдыханием асбестовой пыли. Типы опасностей от токсичных веществ на рабочем месте. Влияние излучений на здоровье: микроволны, радиоволны, высоковольтные линии электропередачи. Биологическое действие радиации: рентгеновские, гамма-лучи.

Информация:

Тип работы: Контрольная. Предмет: Охрана труда. Добавлен: 26.09.2014. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Содержание

Введение
1. Асбест
1.1 Болезни, вызываемые вдыханием асбестовой пыли
1.2 Использование асбеста
1.3 Оценка риска
2. Токсичные вещества на рабочем месте
2.1 Типы опасностей от токсичных веществ на работе
2.2 Болезни и токсичные вещества
2.3 Законы, защищающие рабочих
3. Излучения: микроволны, радиоволны, высоковольтные линии электропередачи
3.1 Электромагнитный спектр
3.2 Биологическое действие неионизирующего излучения
3.3 Микроволны и радиочастотное излучение
3.4 Высоковольтные линии электропередачи
4. Радиация: рентгеновские лучи, гамма-лучи и частицы
4.1 Виды ионизирующих излучений
4.2 Возможные источники ионизирующих излучений, воздействующих на человека
4.3 Атомная энергетика и риск облучения
4.4 Биологическое действие ионизирующего излучения
4.5 Следует ли снизить допустимые дозы облучения?
4.6 Отходы урановых рудников: ненужный риск
Заключение
Литература
Введение

В этой работе мы рассмотрим некоторые ситуации, где отдельный человек мало что может сделать, чтобы избежать контакта с канцерогенами окружающей среды. Воздействие асбеста, ионизирующих излучений и ряда канцерогенных веществ на рабочих местах большей частью не может быть устранено индивидуальными защитными мерами. Различные загрязнители воздуха, способные увеличить опасность заболевания раком (такие, как микрочастицы), и некоторые загрязнители воды (например, тригалоидметаны) тоже относятся к категории факторов, с которыми поневоле приходится контактировать.
1. Асбест

1.1 Болезни, вызываемые вдыханием асбестовой пыли

Потребовалось много времени и усилий, чтобы узнать, что болезни, подобные пневмонии или скарлатине, вызываются микроскопическими созданиями - микробами. Как трудно было бы найти причину болезни, если бы ее симптомы проявлялись лишь через 20 или 40 лет после того, как человек подвергся воздействию микроорганизма. Но именно так обстоит дело с болезнями, вызываемыми вдыханием асбестовой пыли.
Одно из таких заболеваний - асбестоз, при котором дыхание затруднено из-за присутствия волокон асбеста в легких. Ткань вокруг Волокон уплотняется, и кислород не может здесь переходить в кровь. Асбестоз обычно не проявляется раньше чем через 20 лет после начала работы человека с асбестом.
Вдыхание асбестовой пыли может также вызывать рак, как самого легкого, так и покрывающей его плевры. По-видимому, даже кратковременное воздействие асбеста может привести к заболеванию раком спустя 20 - 40 лет. Так, известен случай, когда одна женщина, будучи еще ребенком, недолгое время ходила в школу в Южной Африке мимо свалки асбестовых отходов. По дороге из школы домой она вместе с одноклассницами имела обыкновение скатываться с асбестовых куч. После переезда семьи она больше никогда не имела контакта с асбестом. Через 50 лет она умерла от редкой формы рака легких (мезотелиомы), вызванного пылью, которой она дышала, когда ей было 5 лет.
Люди, работающие на судостроительных заводах (где используются большие количества асбеста для теплоизоляции кораблей), подвергаются повышенному риску получить мезотелиому. Это случается, даже если они работали там короткое время - всего несколько недель - и даже если они сами не имели непосредственно дела с асбестом. Большинство связанных с асбестом болезней встречается у людей, работавших в отраслях, где асбест производится или используется, однако существует, видимо, угроза также и для семей тех, кто работает с асбестом. Вероятно, асбест, занесенный в дом на рабочей одежде, был причиной развития мезотелиомы у детей или жен рабочих. Поскольку доказано, что даже такие небольшие количества асбеста вызывают болезнь, эксперты полагают, что и самый минимальный уровень загрязнения асбестом не может считаться безопасным.
1.2 Использование асбеста

Минеральная природа асбеста гарантирует, что он не горит. По этой причине асбест полезен в составе огнестойких материалов. Он находит применение в одежде пожарных, в жаростойких рукавицах и матах, для футеровки печей и для топочных воздуховодов. Его включают также в тормозные накладки, в плитку для потолков и пола, в смолу и цемент для кровельных работ. В некоторых материалах асбест прочно связан и поэтому вряд ли может загрязнять окружающую среду; к этой категории относятся плитки для пола. В других случаях асбест используется таким образом, что возможно его высвобождение в воздух и воду.
Иногда асбест находят там, где его не должно быть. В ряде лекарств, а также в некоторых сортах пива и джина были обнаружены волокна асбеста. Скорее всего, они были смыты в эти продукты, когда жидкость пропускали через асбестовые фильтры. Более 20 лет волокна асбеста загрязняли питьевую воду в Дулуте (шт. Миннесота) и Сьюпириоре (шт. Висконсин). Оба этих города берут воду из озера Верхнего. В течение 22 лет компания «Reserve Mining» ежедневно сбрасывала в это озеро 67000 т рудничных отходов, содержавших значительные количества асбеста. Повышенной заболеваемости раком желудочно-кишечного тракта в этом районе пока не отмечалось. Однако волокна асбеста были найдены в моче людей, пивших воду из озера Верхнего. Хотя асбест-- известный канцероген, если его вдыхают, действие его при поглощении с водой не выяснено. Двадцать лет--недостаточно долгий срок, чтобы можно было сказать, возрастает ли частота рака в результате питья воды, загрязненной асбестом.
1.3 Оценка риска

Небольшие количества асбестовых волокон определенно присутствуют в воздухе крупных городов. Это, по-видимому, в основном связано с сооружением или сносом зданий с асбестосодержащими конструкциями.
Волокна были найдены также в воздухе тех мест, где асбест добывают, размалывают или превращают в различные продукты. К сожалению, нет хорошего метода выявления очень малых количеств таких волокон, переносимых воздухом. В некоторых районах страны природные месторождения асбестосодержащих пород могут создавать опасные уровни содержания асбестовых волокон в воздухе. Исследователи недавно рекомендовали закрыть пыльные велосипедные тропы в рекреационной зоне Клир-Крик в округе Сан - Бенито (шт. Калифорния). Пробы пыли, взятые вдоль троп, на 90% состояли из асбеста.
Известно, что почти у всех, а не только у людей, работающих с асбестом, в легких имеются «асбестовые тельца» (это волокна асбеста, которые после их вдыхания организм покрывает особым белком). К сожалению, мы не знаем, означает ли присутствие таких телец, что когда-нибудь у человека разовьется рак или другая связанная с асбестом болезнь. Вспомните, что вызванный им рак может не проявляться 20--40 лет. Поскольку мы еще так мало знаем о действии небольших количеств асбеста, кажется разумным по возможности предотвращать его попадание в воздух, воду и пищу.
Учитывая это, Агентство охраны окружающей среды в 1986 г. предложило запретить в будущем всякое производство асбестовой продукции. Если это предложение будет принято (после обсуждения общественностью и соответствующими агентствами), все производство асбестовых кровельных материалов, плиток для полов, асбоцементных труб и асбестовой одежды должно немедленно прекратиться. Изготовление всех других асбестосодержащих продуктов, а также добыча, размол и импорт асбеста будут постепенно прекращены за 10-летний период. Для большинства продуктов из асбеста имеются адекватные заменители. Главным исключением остаются накладки для тормозов и муфт сцепления в тяжелых грузовых автомашинах. Согласно оценке Агентства охраны окружающей среды, использование более дорогих заменителей асбеста в ближайшие 15 лет обойдется потребителям в 1,8 млрд. долларов. По оценке того же ведомства, такой запрет предотвратит гибель 1900 человек от болезней, связанных с асбестом (главным образом, среди работающих с ним), за тот же период.
2. Токсичные вещества на рабочем месте

2.1 Типы опасностей от токсичных веществ на работе

Для большинства людей с понятием охрана труда ассоциируются предохранительные устройства против прямой опасности для жизни и для целости конечностей, против несчастных случаев с машинами или химических ожогов. Это опасности, устранения которых работающие справедливо ожидают от администрации. Однако есть и другие, менее очевидные опасности, также угрожающие здоровью, и их масштаб только сейчас начинает выясняться. В работе, опубликованной в 1977 г. Национальным институтом профессиональной безопасности и здоровья, утверждалось, что один из каждых четырех американских рабочих на протяжении своей трудовой жизни может подвергнуться воздействию токсичного вещества, способного вызвать болезнь или смерть (Maugh, 1977). Это означает, что почти 22 млн. рабочих подвергались или подвергаются воздействию ядовитых веществ: растворителей, ртути, свинца, пестицидов и т. п. Кроме того, примерно 880000 этих рабочих, или 1% всей рабочей силы, в настоящее время контактирует с известными канцерогенами, такими, как асбест, соединения хрома, мышьяк или хлороформ. Часто рабочие или даже их наниматели не знают об опасности, так как токсичные вещества содержатся в продуктах, известных им только по фирменному названию.
Не составляют исключения и «белые воротнички». Секретари и администраторы могут подвергаться на предприятиях воздействию токсичных загрязнителей воздуха, подобно тому, как семьи работающих с асбестом, свинцом или пестицидами контактируют с этими веществами через рабочую одежду. Для анестезиологов и другого персонала операционных вероятность ряда патологий (болезней почек и печени, рака, рождения детей с врожденными пороками) выше, чем для населения в целом.
2.2 Болезни и токсичные вещества

Как могла проблема такого масштаба столь долго игнорироваться? Одна из причин - это использование фирменных названий и отсутствие этикеток с обычными или химическими названиями составных частей. Опубликованное в 1977 г. исследование Национального института по охране труда заняло два года отчасти потому, что 70% веществ, обнаруженных на рабочих местах, имели только фирменные названия. Институту пришлось запрашивать 10000 изготовителей для установления состава этих веществ.
В мае 1986 г. Управление профессиональной безопасности и здравоохранения стало требовать, чтобы все химические компании снабжали рабочих таблицами с детальной информацией об опасных химикатах, с которыми им приходится иметь дело. Профсоюзы и группы по охране окружающей среды протестовали против оговорки о том, что компании имеют право не публиковать такую информацию, если она затрагивает коммерческую тайну: таким образом, изготовители могут решать, обозначать ли им химикаты обобщенным (например, «галоидзамещенные углеводороды») или торговым названием («хлористый винил»).
Труднее определить, какие из материалов на рабочем месте токсичны. эпидемиологические данные о здоровье рабочих -- это по необходимости косвенные данные, поскольку информацию приходится принимать в таком виде, в каком она дается. Нет возможности планировать точные эксперименты для проверки интересных теорий. В рамках Национальной программы по токсикологии химикаты испытывают на животных по системе приоритетов. Эта система основывается на предполагаемой канцерогеннсти химикатов и на том, как много рабочих или вообще людей, вероятно, подвергнутся их воздействию.
В прошлом рабочие часто оказывались случайными «кроликами» для испытания токсичных материалов. Асбест, мышьяк и хлористый винил были признаны канцерогенами после того, как было показано, что рабочие, имевшие дело с этими материалами, чаще заболевали раком, чем люди из других сравнимых групп населения. Однако некоторые болезни, подобно раку, не проявляются много лет после контакта с токсичным материалом. Даже если компания ведет тщательную регистрацию наемных работников, легко потерять след уже уволившихся рабочих, которые могли заболеть после этого. В некоторых случаях компании по ряду причин неохотно предоставляют данные о здоровье работающих. Среди этих причин, вероятно, боязнь привлечения к суду кем-либо из работающих или введения правительством новых ограничительных правил.
Законы, требующие, чтобы свидетельства о смерти содержали информацию о роде занятий умершего и родителей, помогли бы выявлять опасные работы, а также вещества, способные вызвать появление детей с врожденными дефектами.
2.3 Законы, защищающие рабочих

Управление профессиональной безопасности и здравоохранения по закону ответственно за охрану здоровья рабочих. Оно устанавливает пределы допустимого воздействия различных токсичных материалов или определяет, какие защитные средства необходимы рабочим. Кроме того, Управление инспектирует рабочие места, следя за выполнением предписаний работодателями.
Проблемы, связанные с доказательством вредности тех или иных материалов для рабочих, затруднили установление стандартов. Очень многие предписания оспариваются промышленниками в заседаниях комиссий или в суде. Это привело к долгой и дорогостоящей борьбе между Управлением, промышленниками и группами защиты прав работающих. В первые 9 лет своего существования Управление сумело установить предписания только для 20 веществ. В прошлом для обоснования своих предписаний Управление оценивало угрозу для рабочих от опасных веществ общими соображениями, по сути, представлявшими собой качественную оценку риска. Однако решением суда от Управления потребовали более точного обоснования: недостаточно просто предполагать, что уменьшение воздействия химиката всегда будет целесообразным. Иначе говоря, Управление должно указать фактическую пользу от предлагаемых мер, оценив ее в сопоставлении с их стоимостью.
Опасности, связанные с индустрией, и общество
Воздействию опасных веществ могут подвергаться не только рабочие на своих рабочих местах. От выбросов токсичных химикатов могут страдать и жители окрестных районов -- регулярно или в случае аварии. Катастрофа в Бхопале (Индия), при которой погибло более 2000 человек, когда на заводе произошла утечка изоцианата, была наихудшим бедствием в истории промышленности.
Чтобы выяснить, возможны ли аналогичные происшествия в США, Агентство охраны окружающей среды провело обследование опасных химикатов, используемых и хранящихся в стране. Был составлен список 403 химикатов, представляющих опасность для общественного здоровья. Агентство предложило, чтобы местные органы власти или группы граждан проверяли на предприятиях книги регистрации как поступающих, так и производимых химикатов, чтобы выяснить, не производится ли в их общине какое-либо из 403 опасных веществ. Далее Агентство предлагает, чтобы местные власти выяснили у компаний процедуру обращения с химикатами, чтобы был исключен всякий риск для общины; было издано руководство для общин или групп, желающих предпринять такую программу (Chemical Emergency Preparedness Program, Interim Guidance, U.S.EPA, November 1985).
3. Излучения: микроволны, радиоволны, высоковольтные линии
электропередачи

В годы с 1953 по 1976 посольство США в Москве подвергалось слабому микроволновому облучению. Почему Советы решили облучать посольство, все еще не ясно. Возможно, было намерение создать у персонала какое-то особое нейрофизиологическое состояние. Безусловно, у людей появлялось некоторое беспокойство; однако, насколько позволяли установить имеющиеся медицинские методы, этот эффект был обусловлен больше боязнью того, что могут причинить микроволны, чем самим физическим воздействием. Известно, что излучения могут вредить здоровью человека, однако мы знаем также, что характер наблюдаемых последствий зависит от типа излучения и от дозы.
3.1 Электромагнитный спектр

На рисунке1 представлен весь электромагнитный спектр. Как показано на этой схеме, он включает много видов излучений -- от очень длинных волн, возникающих, например, при работе электрогенераторов, до очень коротких, таких, как рентгеновские и космические лучи. Световые волны, воспринимаемые глазом, тоже входят в электромагнитный спектр, но это только малая часть всего диапазона.
Рисунок 1 Полная шкала э/м волн
Влияние излучений на здоровье зависит от длины волны. Последствия, которые чаще всего имеют в виду, говоря об эффектах облучения (радиационное поражение и различные формы рака) вызываются только более короткими волнами. Эти типы излучений известны как ионизирующая радиация. В отличие от этого более длинные волны -- от ближнего ультрафиолета (УФ) до радиоволн и далее -- называют неионизирующим излучением; его влияние на здоровье совершенно иное.
Микроволны находятся в этой неионизирующей области, тогда как рентгеновские лучи, гамма-лучи и космические лучи -- это ионизирующие излучения. Мы рассмотрим здесь влияние этих двух категорий излучения на организм. Воздействие ультрафиолетовых лучей -- главным образом их способность вызывать рак кожи.
3.2 Биологическое действие неионизирующего излучения

Неионизирующее излучение может усиливать тепловое движение молекул в живой ткани. Это приводит к повышению температуры ткани и может вызывать вредные последствия, такие, как ожоги и катаракты, а также аномалии развития утробного плода. Не исключена также возможность разрушения сложных биологических структур, например клеточных мембран. Для нормального функционирования таких структур необходимо упорядоченное расположение молекул. Таким образом, возможны последствия более глубокие, чем простое повышение температуры, хотя экспериментальных свидетельств этого пока недостаточно.
Большая часть опытных данных по неионизирующим излучениям относится к радиочастотному диапазону. Эти данные показывают, что дозы выше 100 милливатт (мВт) на 1 см2 вызывают прямое тепловое повреждение, а также развитие катаракты в глазу. При дозах от 10 до 100 мВт-см2 наблюдались изменения, обусловленные термическим стрессом, включая врожденные аномалии у потомков. При 1--10 мВт-см-2 отмечались изменения в иммунной системе и гематоэнцефалическом барьере. В диапазоне от 100 мкВт-см-2 до 1 мВт-см-2 не было достоверно установлено почти никаких последствий.
По-видимому, при воздействии неионизирующего излучения существенное значение имеют лишь ближайшие последствия, такие, как перегрев тканей (хотя имеются новые, пока неполные, данные о том, что рабочие, подвергающиеся действию микроволн, и люди, живущие очень близко к высоковольтным линиям электропередачи, могут быть больше подвержены заболеванию раком). В московском посольстве США концентрация энергии микроволн не превышала максимума в 18 микроватт на 1 см2, и там не удалось выявить никакого прямого влияния их на персонал.
3.3 Микроволны и радиочастотное излучение

Этому отсутствию видимых последствий при низких уровнях микроволнового облучения нужно, однако, противопоставить тот факт, что рост использования микроволн составляет, по меньшей мере, 15% в год. Помимо применения в микроволновых печах они используются в радарах и как средство передачи сигналов в телевидении и в телефонной и телеграфной связи. В США нет стандарта на дозы неионизирующих излучений, хотя закон об охране труда рекомендует, чтобы рабочие не подвергались воздействию выше 10 мВт-см~2. В бывшем Советском Союзе для населения принят предел в 1 мкВт-см-2.
Промышленные рабочие, участвующие в процессах нагрева, сушки и изготовления слоистого пластика, могут подвергаться некоторому риску, так же как и специалисты, работающие в радиовещательных, радарных и релейных башнях, или некоторые военнослужащие. Рабочие подавали иски на компенсацию с обвинением в том, что микроволны способствовали нетрудоспособности, и, по меньшей мере, в одном случае было принято решение в пользу рабочего.
Тем временем с увеличением числа источников микроволнового излучения возрастала и тревога в отношении его воздействия на население. Сооружение микроволновой телевизионной передающей антенны на крыше Нью-йоркского центра мировой торговли было остановлено, когда инженеры осознали, что это подвергнет какую-то часть служащих этого учреждения, а также туристов на крыше здания облучению порядка 360 мкВтсм-2. Береговой охране не разрешили соорудить микроволновую передающую башню в системе управления движением судов в гавани Нью-Йорка из-за сомнений общественности в безопасности микроволн.
Правительственные учреждения и группы заинтересованной общественности хотели бы установления стандартов на различные формы неионизирующей радиации. Многие промышленные группы желали бы иметь федеральные стандарты как для ориентировки при конструировании аппаратуры, так и для того, чтобы предотвратить разнобой в местных муниципальных постановлениях.
3.4 Высоковольтные линии электропередачи

Еще один предмет беспокойства наряду с микроволнами и радиочастотным излучением -- это излучения от высоковольтных линий электропередачи. Такие линии предназначены для переноса больших количеств энергии от электростанций к крупным населенным центрам. Наиболее мощные из действующих линий рассчитаны на напряжение в 765 000 вольт (765 кВ); одна из них способна передавать достаточно энергии для Бостона и Балтимора вместе взятых. На будущее планируются линии напряжением до 2200 кВ. Линии таких мощностей создают вокруг себя электрические и магнитные поля.
В обычной кухне электроприборы могут создавать электрическое поле напряженностью около 3 В*м, Прямо под линией электропередачи на 765 кВ поле на уровне земли достигает примерно 10 кВ-м^-1. Однако если отойти на 150 м от линии, оно уменьшится до 0,1 кВм-1. Таким образом, возможные проблемы касаются в основном воздействий в зоне непосредственно вокруг линий или под ними. Эти воздействия включают электрический шок, биологические эффекты, вызываемые электрическими и магнитными полями, и влияние коронного разряда электрический шок. Высоковольтные линии вызывают электрический шок у людей или животных, передвигающихся под ними. На расстоянии до нескольких метров вокруг самой линии может происходить пробой воздуха между линией и и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.