На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Одномерное поступательное движение в замкнутом пространстве. Потенциальный ящик. Анализ поступательного движения одной частицы в замкнутом пространстве. Уравнение Шредингера для частицы в ящике. Одномерное вращение и плоский ротатор. Волновые функции.

Информация:

Тип работы: Реферат. Предмет: Астрономия. Добавлен: 26.09.2014. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


- 12 -

Стационарные «одномерные» движения одной частицы.

3.1. Одномерное поступательное движение в замкнутом пространстве. Потенциальный “ящик”.

Анализ поступательного движения одной частицы в замкнутом пространстве принадлежит к числу простейших примеров систематического применения квантовой механики к решению важных химических и физических проблем. В их числе термодинамические свойства идеального газа, спектроскопия электронных переходов у сопряженных органических красителей, электронные свойства кристаллов и др.

Рассмотрим следующую модель, называемую потенциальным “ящиком”.

3.1.1. Вообразим, что на ограниченном интервале 0<x<l движется частица с массой m, которая не может покинуть пределы интервала из-за того, что на его границах потенциальная энергия скачкообразно возрастает до бесконечно большого значения. Это условие эквивалентно тому, что интервал ограничен идеально отражающими стенками. Поскольку потенциальная энергия частицы внутри интервала 0L конечна и, следовательно, несоизмеримо меньше, чем высота стенок, можно положить ее равной нулю. Таким образом, математическая постановка задачи может быть оформлена так, как показано на рис. 2 и записано формулами (3.1) и (3.2):

3.1.2. Составим уравнение Шредингера для частицы в “ящике”. Поскольку на интервале (0,L) U(x)=0, то в составе гамильтониана остается только оператор кинетической энергии:

(3.3)

а уравнение Шредингера приобретает вид:

(3.4)

Соберем все постоянные в правой части равенства и введем обозначение:

, (3.5)

т.е. заменим энергию пропорциональной ей величиной е, отличающейся от энергии только постоянным множителем, и получим уравнение известной формы:

, (3.6)

3.1.3. Это дифференциальное однородное линейное уравнение 2-го порядка с постоянным коэффициентом е, который сразу удобно представить как квадрат некоторого параметра k, т.е.

. (3.7)

Частные решения этого уравнения имеют вид экспонент с комплексными показателями или тригонометрических функций:

, (3.8)

а общее - их линейных комбинаций:

, (3.9)

где . (3.10)

3.1.4. Общее решение уравнения еще не является волновой функцией. Для того, чтобы такое превращение произошло, необходимо проверить совместимость полученного решения со всеми требованиями, предъявляемыми к волновой функции, и привести его в соответствие с ними:

требованию неразрывности удовлетворяют обе тригонометрические составляющие и общее решение - также;

требованию конечности решение тоже удовлетворяет, поскольку оно не может превышать величину (А+В) и не может быть меньше, чем -(А+В). Это связано с тем, что функции sin(x ) и cos(x) изменяются в пределах -1 до 1;

однозначности решения (3.9) нет, пока не определена точка отсчета. Поэтому введем граничные условия, а именно:

, (3.11)

, (3.12)

Эти условия означают, что волновая функция исчезает на границах интервала, вне которого система не существует. Из уравнений (3.9) и (3.11) следует, что

. (3.13)

Таким образом, приемлемое решение примет вид:

.

3.1.5. Из второго граничного условия (3.12) получаем следствие:

. (3.15)

Условие (3.15) автоматически ведет к дискретности наборов энергетических уровней (3.17) и состояний (3.18):

, (3.16)

. (3.17)

Волновая функция имеет действительный вид

. (3.18)

Окончательная процедура - нормировка волновой функции сводится к расчету соответствующего масштабного множителя - ее амплитуды В:

. (3.19)

Рассчитаем значение интервала, используя тригонометрическую подста-новку и замену переменной :

Отсюда. , и нормированные волновые функции состояний частицы в "яшике" приобретают вид

. (3.20)

В формулах (3.17) и (3.18) введена нумерация состояний и соответствую-щих энергетических уровней. Номер n называется квантовым числом данного состояния и уровня, и волновая функция приобретает номер, т.е. .

3.1.7. Рассмотрим свойства уровней и волновых функций частицы в одно-мерном “ящике”. Примем за единицу энергии вепичину ; в таком случае уровни, отвечающие формуле (3.17), равны , и их можно изобразить таблицей. Откладывая величины Е на вертикальной шкале, построим энергетическую диаграмму (рис3(а))

3.1.8. Точки на интервале , в которых волновая функция имеет нулевые значения, называются узлами. На рис. 3(6) видно, что число узлов на единицу меньше номера состояния n. Область значений волновой функции между соседними узлами называется пучностью. Число пучностей равно номеру состояния. Пучности охватывают или положительные, или отрицательные значения волновой функции.

3.1.9. Возводя Ш в квадрат, получаем функцию плотности вероятности, еоторая может иметь нулевые значения, но не имеет отрицательных. Эта функция представлена на рис. 3 (в).

3.1.10. Волновые функции ортогональны, т.е. для любой пары различных функций с квантовыми числами и обращается в нуль следующий интеграл:

. (3.21)

Особенно наглядна запись в бра- и кет-символах:

. (3.22)

Это свойство является очень общим, и ему можно придать смысл взаимо-исключения состояний.

3.2. Одномерное вращение. Плоский ротатор

3.2.1. Вращение в плоскости классических макроскопических тел при постоянной дистанции центра масс от оси вращения удобнее всего описывать в полярных координатах, и для этого достаточно всего одной переменной - угла ц. В таком случае вместо приведенной массы м используется момент инерции , являющийся постоянной величиной. С математической точки зрения мы имеем дело с системой, обладающей одной степенью свободы, и поэтому такое движение считается одномерным. Подобную систему назовем плоским жестким ротатором.

В микромире невозможно представигь себе точное подобие плоского вращения, так как невозможно жестко фиксировать вращение какой-либо заранее выбранной плоскостью. Причины этого выясним чуть позже. Тем не менее, эта модель передает важнейшие черты стационарного вращения во многих микросистемах, где часто имеется возможность по каким-либо физическим соображениям выделить одну из осей вращения, движение вокруг которой обладает признаками плоского ротатора.

3.2.2. Составим уравнение Шредингера для плоского ротатора, используя полярную систему координат, где переменной координатой является угол ц, а расстояние от оси вращения фиксированно: r=const. Формулы оператора момента импульса (2.11) и оператора кинетической энергии (2.16) представим в полярных координатах. При вращении вокруг одной оси достаточно рассматривать лишь соответствующую компоненту полного момента. Направим ось вращения вдоль декартовой координаты z и будем рассматривать компоненту Lz опреатора момента вдоль этой оси (2.14). Замена координат является обычной процедурой, и поэтому продемонстрируем ее на этом примере. Для замены необходимы формулы, выражающие декартовы переменные через полярные, и наоборот:

Для преобразования оператора необходимо операторы частных производных и также выразить в полярных координ и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.