На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Разработка параболической антенны РЛС с частотой 1.2 ГГц. Проведение анализа выбора типа облучателя для данной рабочей частоты антенны. Построение диаграммы направленности облучателя в различных плоскостях. Подбор и расчет геометрических размеров зеркала.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 03.01.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


31
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение
высшего профессионального образования
"Воронежский государственный технический университет"
Радиотехнический факультет
Кафедра радиоэлектронных устройств и систем
Специальность 210302 "Радиотехника"
КУРСОВАЯ РАБОТА
по дисциплине "Устройства СВЧ и антенны"
Антенна РЛС - параболоид вращения
Выполнил студент гр. РТ-041 Д.С. Чёткин
Руководитель доцент кафедры З.Н. Федорова___
Консультанты
Нормоконтроль провел З.Н. Федорова___
Воронеж 2007
ГОУВПО "Воронежский государственный технический университет"
Кафедра радиоэлектронных устройств и систем
ЗАДАНИЕ
на курсовую работу по дисциплине "Устройства СВЧ и антенны"
Тема работы: Антенна РЛС - параболоид вращения.
Студент группы РТ-041 ФИО Чёткин Дмитрий Сергеевич
Общая формулировка задания. Спроектировать передающую антенну для радиолокационной станции. Антенна выполнена в виде параболоида вращения и работает на частоте fср=1.2ГГц. Она должна обеспечить максимальную дальность действия станции r=200 км. Импульсная мощность передатчика Pи=10кВт. Минимально допустимая мощность на входе приемника Pвх=0.1пВт при эквивалентной отражающей поверхности объекта S0= 10 м2. Диапазон рабочих частот . Поляризация излучаемого электромагнитного поля - вертикальная. Длина фидера минимальная
Индивидуальный вариант задания 09
Объём работы и вопросы, подлежащие проработке:
эскизное проектирование антенны или устройства СВЧ;
- ознакомиться с рекомендованной литературой;
- изучить технические требования к проектируемому устройству;
- произвести сравнительный анализ существующих устройств, могущих удовлетворить поставленным требованиям;
- изучить существующие принципы построения и методы теоретического исследования этих устройств;
- технически обосновать выбор типа антенны" устройства СВЧ или выполнить обоснование заданного типа устройства;
- выбрать и обосновать схемное решение проектируемого устройства;
- определить от каких параметров проектируемого устройства зависят его выходные характеристики и обосновать, какие из них и в каких пределах требуется варьировать, чтобы удовлетворить заданию на проектирование;
- сформулировать критерий оценки оптимальности полученного варианта проектного решения.
2) электрический и конструктивный расчет проектируемого устройства;
- рассчитать основные электрические и конструктивные параметры проектируемого устройства провести их оценку и определить в какой мере это устройство удовлетворяет заданным требованиям;
-выполнить, в случае неудовлетворительных результатов оценки, вариации необходимых параметров и повторить эскизное проектирование до получения приемлемого проектного решения;
- рассчитать и построить диаграммы направленности антенн в главных плоскостях;
- рассчитать и построить частотную характеристику устройства СВД; I
- разработать и описать конструкцию проектируемого устройства и выполнить все необходимые для этого чертежи;
3) технико-экономической оценки результатов проектирования;
4) оформление расчетно-пояснительной записи.
Замечания руководителя
СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1. ПРИНЦИП ДЕЙСТВИЯ ПАРАБОЛИЧЕСКОЙ АНТЕННЫ
2. ВЫБОР ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ПАРАБОЛИЧЕСКОГО ЗЕРКАЛА
3. ВЫБОР ОБЛУЧАТЕЛЯ, И ЕГО РАСЧЕТ
3.1. Полуволновый вибратор с контррефлектором
3.2. Щелевой облучатель
4. РАСЧЕТ ДИАГРАММЫ НАПРАВЛЕННОСТИ АНТЕННЫ
5. РАСЧЕТ ДИАГРАММЫ НАПРАВЛЕННОСТИ АНТЕННЫ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ

Введение

Антенной называется радиотехническое устройство, предназначенное для излучения или приема электромагнитных волн. Антенна является одним из важнейших элементов любой радиотехнической системы, связанной с излучением или приемом радиоволн. К таким системам относят: системы радиосвязи, радиовещания, телевидения, радиоуправления, радиорелейной связи, радиолокации, радиоастрономии, радионавигации и др. В конструктивном отношении антенна представляет собой провода, металлические поверхности, диэлектрики, магнитодиэлектрики.

Зеркальные антенны являются наиболее распространенным типом направленных антенн в сантиметровом, дециметровом и, отчасти в метровом диапазонах волн. Широкое использование зеркальных антенн объясняется простотой конструкции, возможностью получения почти любого применяемого на практике диаграммы направленности, высоким коэффициентом полезного действия, малой шумовой температурой, хорошими диапазонными свойствами и т.д. В радиолокационных применениях зеркальные антенны позволяют легко получить равносигнальную зону, допускают одновременное формирование суммарных и разностных диаграмм направленности общим зеркалом. Некоторые типы зеркальных антенн могут обеспечивать достаточно быстрое качание луча в значительном секторе углов. Зеркальные антенны являются также наиболее распространенным типом антенн в космической связи и радиоастрономии.

Классическими представителями зеркальных антенн являются параболические антенны, которые могут выполняться в виде параболоида вращения, параболического цилиндра или параболического цилиндра, ограниченного параллельными проводящими плоскостями.

Параболическая антенна работает по принципу оптической системы. Для получения параллельного пучка лучей в фокус зеркала помещается источник излучения, который посылает на зеркало сферическую волну, возбуждающую на его поверхности систему токов, излучающих затем почти плоскую волну в пространство. Если бы зеркало было бесконечного размера и излучатель был точечный, то антенной излучалась бы идеально плоская волна. В этом случае диаграмма направленности зеркала представляла бы игольчатый луч. Однако для реальных антенн, имеющих конечные размеры и неточечный источник излучения вследствие явления дифракции и нарушения закона постоянства фазы поля в раскрыве из-за конечных размеров реальных облучателей, диаграмма направленности состоит из основного и ряда боковых лепестков.

Чтобы найти поле излучения параболической антенны, необходимо определить векторы электрического и магнитного полей Е и Н, удовлетворяющие уравнениям Максвелла во всем неограниченном пространстве. Точное решение задачи, т.е. получение общих решений уравнений Максвелла, представляет собой большие затруднения. Приближенное решение задачи можно получить двумя способами. По первому способу, впервые примененному Узковым А. И, к исследованию параболических зеркал, первоначально вычисляют токи и заряды, наведенные электромагнитным полем облучателя на поверхности зеркала. При определении закона распределения тока по поверхности зеркала можно использовать характеристику облучателя в свободном пространстве и пренебречь реакцией отраженного поля от зеркала на облучатель, если размеры зеркала и его фокусное расстояние значительно больше длины волны (5 - 10 ?). Зная токи и заряды на поверхности зеркала, можно вычислить поле излучения путем решения уравнений электродинамики (уравнений Максвелла). По второму способу, примененному Б.А. Введенским и Е.И. Майзельсом, первоначально методами геометрической оптики, т.е. на основе представлений о падающем луче и луче, отраженном по закону равенства угла падения углу отражения, вычисляется поле в раскрыве зеркала. Затем, применив метод волновой оптики, базирующийся на принципе Гюйгенса, математическим выражением которого является формула Кирхгофа, вычисляют поле излучения по полученному полю в раскрыве зеркала. При этом явление дифракции на краях зеркала и векторный характер электромагнитного поля излучения не учитывают.

1. Принцип действия параболической антенны

Параболическая антенна используется для создания остронаправленного излучения в диапазоне СВЧ, когда размеры антенны во много раз превышают рабочую длину волны. Антенна состоит из металлического зеркала (рефлектора) параболической формы и облучателя, расположенного в ее фокусе. В работе исследуется антенна с зеркалом в виде параболоида вращения (рисунок 1) с раскрывом, имеющим форму круга диаметром 2R. Прямая, перпендикулярная плоскости раскрыва и проходящая через его центр, является осью зеркала, точка О пересечения оси с поверхностью зеркала - его вершиной. Расстояние f от вершины зеркала до фокуса F называется фокусным расстоянием. На следующем рисунке показан ход лучей в параболической антенне.

Рисунок 1 - Схема параболической антенны.

Рисунок 2 - Ход лучей в параболической антенне.

2. Выбор геометрических размеров параболического зеркала

Для расчета диаметра раскрыва зеркала воспользуемся формулой из радиолокации:

(1)

Все значения нам известны, тогда выражаем из формулы G - коэффициент усиления антенны:

(2)

Зная, что G=Д•?a, где Д - коэффициент направленного действия антенны (положив ?a=1 - КПД), G=Д.

В результате Д=7127.

(3)

Где S - геометрический размер раскрыва зеркала (S=?r2); ? - коэффициент использования зеркала, который показывает насколько эффективно используется вся поверхность зеркала, обычно составляет 0.64?0.65 (0.7).

Диаметр раскрыва зеркала является функцией требующейся ширины диаграммы направленности, а также несколько зависит от амплитудной и фазовой характеристики в раскрыве зеркала. Закон распределения амплитуд поля вдоль поверхности раскрыва зеркала определяется диаграммой излучения облучателя, если пренебречь потерями при отражении от зеркала. Для большинства применяющихся облучателей распределение амплитуд в одной из плоскостей (горизонтальной или вертикальной) вдоль раскрыва зеркала можно с достаточной точностью апроксимировать законом (1-x2) p, где х - координата, откладываемая от оси антенны; р = 0,1,2,3 - некоторое целое число.

Проведем расчет радиуса выпуклой части зеркала. Для этого строится график функции радиуса раскрыва от расстояния у(x) =(4f·x) 0.5, где f- расстояние до фокуса. В результате получен график представленный на рисунке 12.

Рисунок 3 - Зависимость радиуса раскрыва от расстояния.

Радиус параболической части зеркала равен 0.9м. В результате полностью определены геометрические размеры зеркала.

3. Выбор облучателя, и его расчет

Для дальнейших расчетов требуется выбрать облучатель который бы удовлетворял данной антенне. Одной из важных частей параболической антенны является первичный облучатель, помещаемый в фокусе зеркала. В идеале к нему предъявляются следующие требования: 1) облучатель не должен излучать энергию в направлении, противоположном направлению на зеркало, так как это излучение не фокусируется зеркалом и поэтому искажает основную диаграмму направленности; 2) диаграмма облучателя должна обеспечивать равномерное облучение зеркала и получение таким образом максимального коэффициента направленного действия; 3) диаграмма облучателя должна быть такой, чтобы фаза поля в раскрыве зеркала была постоянной. Облучатель, вполне удовлетворяющий этим требованиям, практически не существует. При конструировании параболических антенн используют облучатели в виде полуволнового вибратора, открытого конца волновода, рупора и щели, хотя они только частично удовлетворяют перечисленным требованиям.

Рассмотрим подробнее некоторые типы облучателей.

3.1. Полуволновый вибратор с контррефлектором

В десятисантиметровом диапазоне волн этот облучатель является наиболее удобным в конструктивном отношении. Он легко согласуется с коаксиальным фидером, так как имеет входное сопротивление, близкое к волновому сопротивлению фидера. К недостаткам такого облучателя следует отнести то обстоятельство, что фактически, ввиду конечных размеров, такой облучатель имеет сферический фронт волны только в дальней зоне. Однако при больших фокусных расстояниях (5 - 10?) в пределах небольшого телесного угла фронт волны облучателя можно считать близким к сферическому.

Кроме того, полуволновый симметричный вибратор имеет излучение, направленное вперед и назад, что ухудшает форму диаграммы направленности зеркала. Для "гашения" излучения вперед применяется контррефлектор в виде пассивного вибратора, диска или части сферы.

В технике сантиметровых волн чаще используется рефлектор в виде диска, так как он лучше уничтожает излучение вперед. Для облучателя рассматриваемого типа характерно, что ось его диаграммы направленности из-за несимметричности питания вибратора при применении коаксиального фидера без симметрирующего устройства не совпадает с осью зеркала. Это явление перекоса успешно используется для целей пеленгации. При вращении облучателя вокруг своей оси лепесток диаграммы описывает конус, создавая эффективную равносигнальную зону вдоль оси параболоида.

Рассмотрим расчет облучателя с контррефлектором в виде диска.

а) Выбор размеров облучателя.

Диаметр вибратора выбирают из условий получения нужного диапазона частот и достаточной механической прочности. Практически диаметр вибратора часто полагают равным диаметру внутреннего провода питающей коаксиальной линии, чтобы уменьшить неоднородность в точке подключения вибратора, а также для удобства сборки. Диаметр контррефлектора рекомендуется брать D=0.815?/4. Такой контррефлектор дает достаточно хорошую экранировку переднего лепестка диаграммы вибратора и в то же время не слишком "затемняет" параболическое зеркало. Располагают рефлектор от вибратора на расстоянии d = ?/4, что создает оптимальные условия для сложения поля активного вибратора и поля, отраженного от контррефлектора. Изображение контрефлектора и облучателя представлено на рисунке 3.

Рисунок 3 - Выбор размеров контррефлектора и облучателя.

В результате при заданной частоте (?=0.25м) рассчитаем значение диаметра:

D=0.815•0.25/4=0.051м, d =0.0625м.

б) Расчет диаграммы направленности облучателя.

Воспользуемся принципом зеркального изображения и заменим действие металлической поверхности контррефлектора пассивным вибратором, расположенным на расстоянии от активного и несущим ток, сдвинутый по фазе на 180° относительно тока в активном вибраторе.

Тогда в любой точке пространства поле будет определяться как сумма полей обоих вибраторов и может быть рассчитано умножением диаграммы одиночного полуволнового симметричного вибратора F1(?) на множитель решетки F2(?):

(4)

Где N - количество вибраторов (в рассматриваемом случае 2);

n - расстояние между вибраторами выраженное в длинах волнах(n=1/2);

p - сдвиг фаз между точками в вибраторах; р=1/2 (в периодах);

? - угол между линией расположения вибраторов и рассматриваемым направлением.

На рисунке 4 представлено зеркальное изображение вибратора с контррефлектором.

Рисунок 4 - Зеркальное изображение вибратора с контррефлектром в виде диска.

После преобразования множитель решетки имеет вид:

F2(?) =2cos [900(1-cos(?))] (5)

Для одиночного, горизонтально расположенного вибратора диаграмма направленности горизонтальной плоскости определяется выражением:

(6)

E? - поле в рассматриваемом направлении;

Emax - поле в направлении максимального излучения (?=00);

? - угол отсчитываемый от нормали к вибратору.

Окончательно диаграмму направленности в горизонтальной плоскости вибратора с контррефлектором можно записать в виде:

(7)

Диаграмма направленности вибратора с контррефлектором в горизонтальной плоскости представлена на рисунке 5.

Рисунок 5 - Диаграмма направленности в горизонтальной плоскости контррефлектора.
Диаграмма направленности системы в вертикальной плоскости определяется одним только множителем F2(?), так как излучение одиночного горизонтального вибратора в этой плоскости ненаправленное, представлена на рисунке 6.
Рисунок 6 - Диаграмма направленности в вертикальной плоскости контррефлектора.
Учитывая, что форма диаграммы направленности как в горизонтальной, так и вертикальной плоскостях для большинства применяющихся облучателей мало отличается друг от друга в пределах угла раскрыва зеркала, для упрощения в дальнейших расчетах используется в обоих плоскостях более широкая из диаграмм направленности.
в) Расчет входного сопротивления.
Входное сопротивление полуволнового вибратора с контррефлектором в вид и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.