На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Исследование линеаризованной системы, в которой не учитываются нелинейные элементы. Ввод пропорционального регулятора для коррекции системы. Этапы проведения синтеза данной системы. Определение реакции системы на ступенчатый, гармонический сигнал.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 05.03.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


57
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Тема: "Динамический синтез систем автоматического управления"

Введение
Существует чрезвычайно большое разнообразие автоматических систем, выполняющих те или иные функции по управлению самыми различными физическими процессами во всех областях техники.
В данной курсовой работе производится динамический синтез следящей системы автоматического управления.
В следящей системе выходная величина воспроизводит изменение входной величины, причем автоматическое устройство реагирует на рассогласование между выходной и входной величинами. Следящая система имеет обратную связь выхода со входом, которая по сути дела, служит для измерения результата действия системы. На входе системы производится вычитание входного сигнала и сигнала с датчика обратной связи. Величина рассогласования воздействует на промежуточные устройства, а через нее на управляемый объект. Система работает так, чтобы все время сводить к нулю рассогласование.
В состав системы входят нелинейности, именно поэтому по характеру внутренних динамических процессов ее относят к нелинейным системам. По протеканию процессов в системе ее относят к непрерывным, т. к. в каждом из звеньев непрерывному изменению входной величины во времени соответствует непрерывное изменение выходной величины.
Для того чтобы линеаризованная система отвечала требуемым показателям качества в установившемся режиме и переходном процессе, она подвергается синтезу, а именно, в нее включается регулятор, который реализует выбранный закон управления. В интересах простоты расчета сводим задачу к такой форме, чтобы максимально использовать методы исследования обыкновенных линейных систем, т. к. теория и различные прикладные методы для них наиболее полно разработаны.

1. Синтез линейной системы

1.1 Анализ исходной системы

Рисунок 1.1 Функциональная схема замкнутой системы,

где

ЭС - элемент сравнения;

УМ - усилитель мощности;

ОУ - объект управления;

КС - кинематическая связь;

ДОС - датчик обратной связи;

Усилитель мощности предполагается безынерционным, но с ограниченной зоной линейности ±UВХmax. В кинематической связи между ОУ и ДОС присутствует люфт (зазор) величиной 2 (рис. 1.2.).

Рисунок 1.2. - Нелинейные характеристики элементов

Передаточные функции ОУ и ДОС известны:

,

где

,

где

Составим структурную схему исходной системы:

Рисунок 1.3 Структурная схема исходной системы

Для линеаризации системы пренебрегаем наличием нелинейных эффектов, то есть, считаем, что:

- усилитель мощности имеет неограниченную зону линейности

- зазор (люфт) в кинематической связи "выход системы - датчик обратной связи" отсутствует и коэффициент передачи равен единице

Усилитель мощности, имея неограниченную зону линейности, будет иметь передаточную функцию вида:

,

где КУМ - коэффициент передачи УМ.

Максимально выходное напряжение усилителя 110В, а зона нелинейности усилителя мощности по входу ±3В.

Тогда получим следующую структурную схему линеаризованной системы.

Рисунок 1.4 Структурная схема линеаризованной системы

По критерию Гурвица проверим устойчивость замкнутой системы.

Передаточная функция замкнутой системы имеет вид:

(1.1)

Запишем характеристическое уравнение замкнутой системы:

Необходимым условием устойчивости системы является одинаковость знака всех коэффициентов. Данное условие выполняется. Достаточным условием является положительность определителей Гурвица. Т.к. система 4 порядка, то следует проверить знак ?3.

(В)

Следовательно, замкнутая система устойчива.

Проверим, удовлетворяет ли система требованиям ТЗ.

Т.к. в ТЗ оговариваются только максимальная скорость нmax и максимальное ускорение еmax, то следует перейти к эквивалентному гармоническому сигналу вида:

с-1

Амплитуду ошибки найдем по модулю передаточной функции по ошибке.

,

,

где - частотная передаточная функция разомкнутой системы.

Так как , то справедливо соотношение .

Поэтому

Тогда, модуль частотной передаточной функции:

(1.2)

Относительную динамическую ошибку системы определим по формуле:

Подставляя значение щk в формулу, получим

Тогда находим

Относительная динамическая ошибка системы 25,4%, следовательно, система не удовлетворяет требованиям ТЗ.

Проверим, удовлетворяет ли система требованиям ТЗ в переходном режиме, т.е.

Для этого нужно построить график переходной характеристики по выходу ДОС.

Для построения используем программный пакет MathCad

Рисунок 1.5 Переходная характеристика по выходу ДОС

Для определения перерегулирования () воспользуемся формулой:

Тогда

Т.е. получили, что перерегулирование удовлетворяет требованиям ТЗ.

Теперь найдем время регулирования (tp). Для этого строим “коридор”, равный 0,022

Из рисунка видно, что tp=1,04с

Т.е. время регулирования не удовлетворяет требованиям ТЗ и данную систему следует откорректировать.

1.2 Анализ системы с пропорциональным регулятором

1.2.1 Структурная схема линеаризованной системы с пропорциональным регулятором

Пропорциональный регулятор реализует простейший линейный закон управления, при котором управляющий сигнал, подаваемый на вход объекта управления, представляет собой усиленный по величине и по мощности сигнал ошибки (рассогласования). В системах с невысокими требованиями такой закон иногда может обеспечить приемлемое качество регулирования и всегда полезно узнать, не относится ли к ним и наша система.

Cоставим структурную схему с пропорциональным регулятором:

Рисунок 1.6 Структурная схема с пропорциональным регулятором

В установившемся режиме заданную точность обеспечивает низкочастотный участок. Проще всего оценить точность системы по ее реакции на гармонический входной сигнал.

,

Из пункта 1.1

Для того, чтобы входное воздействие воспроизводилось с ошибкой, не превышающей m, ЛАХ системы должна проходить не ниже контрольной точки Ak c координатами:

(1.3)

Построим запретную область (ЗО)

Рисунок 1.7 Запретная область

Определим минимальный коэффициент усиления разомкнутой системы [1, § 12.6]с пропорциональным регулятором, учитывая

, где еm- относительная ошибка системы

с-1

Отсюда, коэффициент усиления пропорционального регулятора:

1.2.2 Проверка устойчивости замкнутой системы

Для проверки устойчивости замкнутой системы воспользуемся алгебраическим критерием Гурвица. [1, § 6.2]

Запишем характеристическое уравнение системы:

Т.к. система 4 порядка, то достаточно определить 3

Т.к. определитель больше нуля и все коэффициенты положительны, то замкнутая система с пропорциональным регулятором устойчива.

Теперь проверим систему по критерию Найквиста: [1, § 6.5] анализируем разомкнутую систему, а вывод делаем об устойчивости замкнутой системы.

Передаточная функция разомкнутой системы имеет вид:

Запишем характеристическое уравнение разомкнутой системы:

Все корни характеристического уравнения левые, кроме одного нулевого. Если разомкнутая система на границе устойчивости, то для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывал особую точку с координатами (-1;j0).

Выделим действительную и мнимую часть:

(1.5)

Будем изменять значения от 0 до и находить соответствующие значения Р и Q.

Таблица 1.1

P
Q
0
-11.25
-
234.5
0
4,584*10-3
26.2
-0.95
0
0
0

Рисунок 1.8 Годограф Найквиста

Из рисунка видно, что замкнутая система устойчива.

Проверим устойчивость замкнутой системы по логарифмическим частотным характеристикам.

Построим логарифмическую амплитудную частотную характеристику (ЛАЧХ) и логарифмическую фазовую частотную характеристику (ЛФЧХ).

[1, § 4.4]

Определим модуль частотной передаточной функции для разомкнутой системы:

;

(1.7)

Определим L(w) и

;

;

Рисунок 1.9 ЛАЧХ и ЛФЧХ системы с регулятором

Видно, что точка пересечения ЛФЧХ с линией -180о лежит немного правее точки пересечения ЛАЧХ с осью абсцисс. Следовательно, замкнутая система устойчива.

Проверим систему на устойчивость по критерию Михайлова. [1, § 6.3]

Для устойчивости системы необходимо и достаточно, чтобы годограф Михайлова начинался на вещественной положительной полуоси и при увеличении частоты последовательно проходил число четвертей, соответствующее порядку системы (нигде не обращаясь в 0).

Функция Михайлова для нашей системы:

Выделим вещественную и мнимую части:

;

Построим годограф Михайлова по следующим значениям:

Таблица 1.2

w,
X(w)
Y(w)
0
85,227
0
25,6
0
1,105
26,2
-4,252
0
233,1
0
-1,8259•104
?
-?

Рисунок 1.10 Годограф Михайлова для малых и больших частот соответственно

Следовательно, система устойчива.

Частота среза разомкнутой и замкнутой системы, запасы устойчивости, критический коэффициент усиления, прямые показатели качества и косвенный показатель качества

Частота среза - это частота, в которой ЛАЧХ системы пересекает ось абсцисс. Определим ее по графику ЛАЧХ (рисунок 1.9):

L(w)=0 при w=25.59 c-1

Критическая частота(wkp) - частота, при которой фазовая характеристика пересекает уровень -1800.

wkp=1,418 с-1

Запасы устойчивости определим по формулам:

- запас устойчивости по амплитуде,

-запас устойчивости по фазе

Получаем:

Определим критический коэффициент усиления системы Kkp по критерию Михайлова.

Критический коэффициент усиления - такое значение Kp, при котором замкнутая система находится на границе устойчивости.

Если система находится на границе устойчивости, то левая часть характеристического уравнения равна 0.

Откуда вытекают два равенства:

Следовательно, годограф Михайлова должен проходить через начало координат.

Запишем функцию Михайлова:

Выделим вещественную и мнимую части и приравняем их к нулю:

;

Из уравнения Y(w)=0 находим w:

Подставляем это значение в уравнение X(w)=0 и находим критический коэффициент усиления Kkp

Прямые показатели качества системы и tp определим по графику переходной характеристики замкнутой системы с пропорциональным регулятором по выходу ДОС. [приложение 2]

Рисунок 1.11 График переходной характеристики замкнутой системы по выходу ДОС

По графику находим:

hmax=1,95

= 1

Найдем перерегулирование

Для определения tp построим “коридор” равный .

tp=22,72 с.

Показатель колебательности определяется по АЧХ замкнутой системы.

Запишем передаточную функцию замкнутой системы по выходу ДОС

(1.8)

Преобразуем и выделим вещественную и мнимую части:

;

.

Запишем модуль частотной передаточной функции по выходу ДОС:

(1.9)

По формуле (1.9) построим АЧХ замкнутой системы

Рисунок 1.12 АЧХ замкнутой системы по выходу ДОС

Показатель колебательности определим по формуле:

,

где максимальное значение ординаты АЧХ замкнутой системы по выходу ДОС;

N(0) - значение ординаты АЧХ при w=0.

По рисунку определяем:

; N(0)=1;

Откуда находим: M=75,214

Анализ на соответствие системы с пропорциональным регулятором требованиям ТЗ

Проверим систему на требования по точности воспроизведения входного сигнала.

Относительную динамическую ошибку системы определим по формуле:

;

Передаточная функция разомкнутой системы:

Тогда, модуль частотной передаточной функции:

Подставляя значение щk в формулу для , находим

Относительная динамическая ошибка системы 2,5%, следовательно, система не удовлетворяет требованиям ТЗ.

Время переходного процесса tp=22,72 с. и перерегулирование, найденные ранее, не удовлетворяют требованиям ТЗ.

При введении пропорционального регулятора прямые показатели качества не удовлетворяют требуемым.

При введении регулятора увеличился коэффициент усиления разомкнутой системы и время регулирования. Хотя величина ошибки уменьшилась, тем не менее, она не удовлетворяет требованиям ТЗ. В результате введения регулятора качество переходного процесса ухудшилось.

1.3 Синтез регулятора

Описание методики синтеза регулятора для одноконтурной следящей системы

Динамический синтез - направленный расчет, имеющий конечной целью отыскание рациональной структуры системы и установление оптимальных величин параметров отдельных ее элементов.

Более узкая цель синтеза - определение вида и параметров корректирующего устройства, которое нужно добавить к некоторой неизменяемой части системы, чтобы обеспечит требуемое качество системы в установившемся и переходном режимах.

Наиболее приемлемым для решения задачи динамического синтеза является метод логарифмических амплитудных характеристик (метод ЛАХ). [1, § 12.5] Стадии синтеза по методу ЛАХ включают:

1. построение располагаемой ЛАХ, т.е. ЛАХ исходной системы

2. построение желаемой ЛАХ системы, удовлетворяющей требованиям ТЗ

3. определение вида и параметров корректирующего устройства

4. проверочный расчет - моделирование СУ, позволяющее убедиться в том, что спроектированная система удовлетворяет всем требованиям ТЗ.

Построение исходной ЛАХ

Передаточная функция исходной разомкнутой системы:

;

Построим исходную асимптотическую ЛАХ.

lg(wа)=0,921;

lg(wв)=2;

lg(wс)=2,699

На оси lgw отмечаем lg-ы частот сопряжений. Проводим низкочастотную асимптоту с наклоном -20дБ/дек до первой частоты сопряжения wa. Эта асимптота пересекает ось L в точке . На частоте сопряжения эта асимптота изменяет наклон до -40дБ/дек и проводится до wв. На частоте wв изменяем наклон до -60дБ/дек и проводим асимптоту до wс. На частоте wс меняем наклон до -80 дБ/дек и проводим асимптоту.

Построенная исходная асимптотическая ЛАХ представлена на миллиметровке.

Построение желаемой ЛАХ

Желаемую ЛАХ условно разбивают на 3 участка:

1 участок - низкочастотный. Он отвечает за обеспечение требуемой точности системы в установившемся режиме. Чем в большем диапазоне частот он расположен, тем в большем диапазоне частот не происходит заметного ослабления входного сигнала.

2 участок - среднечастотный. Он отвечает за устойчивость и качество системы в переходном режиме (оценивается величиной запасов устойчивости, прямыми показателями качества - , tр, косвенным показателем М). Этот участок характеризуется 2 параметрами: частотой среза wср и наклоном асимптоты, проходящей через частоту среза.

Традиционно наклон асимптоты берется равным -20дБ/дек, поскольку, чем больше наклон асимптоты, тем труднее обеспечить хорошие динамические свойства системы.

3 участок - высокочастотный. Лучше иметь возможно больший наклон высокочастотных асимптот, что уменьшит требуемую мощность используемых органов.

Построение низкочастотного участка

Низкочастотный участок строится с использованием требований к качеству системы в установившемся режиме.

Чтобы гармонический входной сигнал воспроизводился системой с ошибкой, не превышающей m, низкочастотный участок ЛАЧХ желаемой системы должен проходить выше контрольной точки Ак(к, Lк)

Первые две асимптоты располагаются так, что через контрольную точку Ак проходит первая асимптота. При этом коэффициент усиления будет иметь минимальную возможную величину, равную предельному значению, что является благоприятным.

с-1.

Однако частота точки пересечения второй асимптоты с осью нуля децибел w0 будет значительно больше минимального. Это является нежелательным, т. к. вся ЛАХ будет сдвигаться в область высоких частот.

Таким образом, мы сдвигаем первую частоту сопряжения и совмещаем ее с частотой wа. Отсюда находим первую постоянную времени желаемой ЛАХ

с

Для того, чтобы реальная ЛАХ не заходила в запретную область при w=wk, приподнимаем ЛАХ на 3 дБ.

Построение среднечастотного участка.

Среднечастотный участок определяет устойчивость, запасы устойчивости и качество переходного процесса. Данный участок характеризуется двумя параметрами: частотой среза и наклоном асимптоты. Чем больше частота среза, тем выше быстродействие системы, тем меньше время регулирования tp. Наиболее целесообразно брать наклон асимптоты -20 дБ/дек, так как чем больше наклон асимптоты, тем сложнее обеспечить хорошие динамические свойства системы.

Т.к. заданы прямые показатели качества, то воспользуемся методом Солодовникова В.В. Для нахождения используем готовые номограммы.

;

Выбираем частоту среза

Чем больше wc, тем более быстродействующая будет система; чем меньше wc, тем проще корректирующее устройство.

Выбираем wc=0.9wп=

На оси logw отмечаем точку, соответствующую частоте среза wc, и через нее проводим прямую с наклоном -20дБ/дек. Эта прямая будет среднечастотной асимптотой желаемой ЛАХ.

Избыток фаз определяем в соответствии с заданным перерегулированием. Значение L1 находим из номограммы, для ; L1=25дБ.

Среднечастотный участок проводим вправо до достижения L1=-25дБ. Это значение достигается при logw3>logwc дек. Поэтому совмещаем частоту w3 с частотой wс, для упрощения корректирующего устройства. Избыток фаз незначительно уменьшится, но это незначительно повлияет на перерегулирование системы.

Левая граница определяется сопряжением среднечастотного и низкочастотного участков. Из Рисунка видно, что сопряжение участков происходит при logw2=1,42 дек. Следовательно, частота сопряжения w2= 26,303с-1.

Высокочастотные асимптоты желаемой ЛАЧХ выполняем параллельными высокочастотным асимптотам ЛАЧХ исходной системы. То есть, на частоте wс наклон становится -80дБ/дек.

Желаемая ЛАХ представлена на миллиметровке.

Корректирующие звенья могут вводиться в систему различными способами: а) последовательно; б) параллельно; в) в виде местной обратной связи.

В данной работе КУ включается последовательно, т. к. в маломощных системах нецелесообразно применение корректирующих устройств, сложность моделей которых соизмерима со сложностью моделей всей системы. Простота - достоинство ПКУ. Но есть и недостаток - эффект коррекции уменьшается с течением времени эксплуатации системы, что связано с изменением элементов параметров системы из-за процессов старения и износа. Поэтому при использовании ПКУ предъявляются жесткие требования к стабильности параметров элементов системы.

Определим передаточную функцию корректирующего устройства последовательного типа по формуле:

Получим ПФ корректирующего устройства и определим параметры:

где ,

где

Структурная схема скорректированной системы примет вид

_

Рисунок 1.13 - Структурная схема скорректированной системы

ЛАХ корректирующего устройства получается при вычитании исходной ЛАХ из желаемой (рисунок на миллиметровке).

Проверим, соответствует ли система с корректирующим устройством требованиям ТЗ.

Определим ошибку системы.

Относительную динамическую ошибку системы определим как в п. 1.1 по формуле:

Передаточная функция разомкнутой системы:

(1.10)

Частотная передаточная функция разомкнутой системы:

Тогда, модуль частотной передаточной функции:

Подставляя значение щk в формулу для , находим

Относительная динамическая ошибка системы 1,6%, следовательно, скорректированная система удовлетворяет требованиям ТЗ.

Рассмотрим, удовлетворяет ли исходная система требованию по качеству переходного процесса: время регулирования tp- не более 0.25 с, перерегулирование - не более 20%.

Для проверки величин и tp построим график переходной характеристики исходной системы по выходу ДОС:

,

где - передаточная функция замкнутой системы по выходу ДОС.

Рисунок 1.14 - График переходной характеристики

,

где hmax=1,188 - максимальное значение регулируемой величины;

=1- установившееся значение регулируемой величины в результате завершения переходного процесса.

Перерегулирование скорректированной системы удовлетворяет ТЗ.

Определим время переходного процесса tp:

построив “коридор” с величину , из Рисунка 1.14 определяем, что tp=0.147 с.

Временя регулирования tp удовлетворяет требованию ТЗ.

1.4 Анализ скорректированной системы в частотной области

1.4.1 Рассчитаем и построим ЛАЧХ и ЛФЧХ скорректированной разомкнутой системы

Используем передаточную функцию разомкнутой системы (1.10)

Для получения частотной передаточной функции заменим S на jw и преобразуем

Вещественная и мнимая части соответственно:

(1.11) ; (1.12)

Тогда

.

ЛАЧХ и ЛФЧХ разомкнутой системы представлены ниже.

ЛАЧХ скорректированной системы сместилась вправо, следовательно, необходимые требования по точности выполняются, запасы устойчивости увеличились по сравнению с системой с пропорциональным регулятором.

-- ЛАЧХ и ЛФЧХ скорректированной системы

- - ЛАЧХ и ЛФЧХ системы с пропорциональным регулятором

Рисунок 1.15 ЛАЧХ и ЛФЧХ систем

Построим график АФЧХ по имеющимся формулам (1.11) и (1.12) и сравним его с графиком системы с пропорциональным регулятором. Он представляет собой годограф Найквиста, поэтому сделаем ниже дополнительно выводы об устойчивости системы.

Составим таблицу, изменяя w от 0 до ?:

Таблица 1.3



W,
P(w)
Q(w)
0
-10,604
-?
852,2
0
5,806*10-3
274,2
-0,094
0
0
0

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.