Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Передаточные функции дискретных систем как отношение z-изображений выходной и входной величин при нулевых начальных условиях. Определение передаточной функции дискретной системы при нулевом значении флюктуационной составляющей. Использование фиксатора.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 21.01.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


10
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра РТС
РЕФЕРАТ
На тему:
"Дискретные системы радиоавтоматики"
МИНСК, 2008

Передаточные функции дискретных систем

Передаточная функция дискретной системы определяется как отношение z-изображений выходной и входной величин при нулевых начальных условиях:

; .

Передаточные функции дискретной системы при нулевом значении флюктуационной составляющей определяются выражениями

; (1)

. (2)

Если в системе используется фиксатор, то передаточная функция приведенной непрерывной части системы определяется выражением

,

где - передаточная функция последовательного соединения фиксатора и формирующего фильтра.

;

.

Умножение изображения по Лапласу на соответствует задержке оригинала на величину Т. С учетом теоремы сдвига и обозначения

(3)

получим

(4)

- определяется по таблицам z - изображений.

Разностные уравнения

Разностные уравнения определяют связь между дискретными значениями выходной и входной величин в тактовых точках.

Чтобы составить разностное уравнение, надо представить дискретную передаточную функцию в следующем виде:

. (5)

Если - значение выходной величины, а - входной в виде

z-изображения, то связь между ними определяется выражением

. (6)

Подставим (5) в (6):

(7)

Применим к левой и правой частям уравнения (7) теорему обращения. С учетом теоремы запаздывания оригинала можно записать

, (8)

где ;

.

Из уравнения (8) можно определить значения оригинала в тактовых точках:

. (9)

Уравнение (9) является разностным уравнением, определяющим связь между входной и выходной величинами в тактовых точках.

Операторный коэффициент передачи дискретной системы

Для составления операторного коэффициента передачи вводится оператор запаздывания - с.

Действие его на временную функцию приводит ее к сдвигу по времени на величину Т:

;

;

…………………………

.

При использовании оператора с разностное уравнение записывается в виде

,

где

.

Чтобы перейти от дискретной ПФ к операторному коэффициенту передачи, необходимо сделать замену:

.

Комплексный коэффициент передачи дискретной системы

Комплексный коэффициент передачи дискретной системы (частотную передаточную функцию) можно получить из передаточной функции дискретной системы путем замены :

.

Комплексный коэффициент передачи дискретной системы определяется как отношение комплексных амплитуд управляемой величины Y(kT) и задающего воздействия в тактовых точках kT. По формированию значений выходного процесса в тактовых точках дискретная система эквивалентна непрерывной с комплексным коэффициентом передачи Hд(jw).

Комплексный коэффициент передачи является периодической функцией переменной с периодом изменения, равным

.

Устойчивость дискретных систем

Устойчивость дискретной системы связана с расположением полюсов ее передаточной функции на комплексной плоскости. Если все полюса расположены в левой полуплоскости, система устойчива. Таким образом, заменив в передаточной функции H(z) z на esT и решив характеристическое уравнение, можно определить устойчивость.

При переходе от s-плоскости к z-плоскости левая полуплоскость плоскости s трансформируется в круг единичного радиуса. Поэтому дискретная система устойчива, если полюсы ее передаточной функции H(z) расположены внутри окружности единичного радиуса, т.е. удовлетворяют услови и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.