Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Лекции Фзичн процеси у смугових, загороджувальних, режекторних фльтрах верхнх частот. Суть методу частотної змнної та його використання. Параметри та характеристики фльтрв при пдключення до них навантаження. Принципи побудови та област їх застосування.

Информация:

Тип работы: Лекции. Предмет: Схемотехника. Добавлен: 30.01.2010. Год: 2010. Уникальность по antiplagiat.ru: < 30%

Описание (план):


2
Лекція
Загальні уявлення про індуктивні фільтри

Зміст

Вступ
1. Фільтри верхніх частот (ФВЧ)
2. Смугові фільтри та інші типи індукційних фільтрів
3. Вплив навантаження на характеристики фільтрів
Висновок
Вступ

В даній лекції будуть розглянуті фізичні процеси у фільтрах верхніх частот, смугових, загороджувальних, режекторних. Ці фільтри як і фільтри нижніх частот широко використовуються в апаратурі радіозв'язку, радіорелейному зв'язку, а особливо в системах передачі з частотним розділом каналів.
Учбово-виховні цілі: Вивчити принципи побудови фільтрів верхніх частот, смугових та режекторних фільтрів, області їх використання; Виховати високу культуру інженера-зв'язківця.
Учбово-матеріальне забезпечення: Принципіальні схеми апаратури, її функціональні вузли з ФВЧ та СФ\П-303\, Діапроектор, діапозитиви.
Виявляється, що використовуючи так званий метод перетворення частоти, можна при розрахунках фільтрів верхніх частот та інших фільтрів використати всі методи, формули, малограми та таблиці, одержані для фільтрів нижніх частот.
У вступі акцентувати увагу курсантів на важливість теми вивчення, використовуючи схеми та блоки реальної апаратури зв'язку. Показати широке застосування різних видів фільтрів.
У першому питанні коротко викласти суть методу частотної змінної та на його основі дати алгоритм одержання фільтрів верхніх частот з фільтрів нижніх частот.
У другому питанні теж, використовуючи метод частотної змінної, показати принцип одержання смугових фільтрів, загороджувальних, режекторних фільтрів з ФНЧ прототипів.
У третьому питанні показати, як змінюються параметри та характеристики фільтрів при підключення до них навантаження та зміни її другої величини.
В заключній частині узагальнити матеріал і ще раз акцентувати увагу на вузлових моментах теми.
1. Фільтри верхніх частот (фвч)

При розгляданні принципів побудови фільтрів верхніх частот почнемо з розгляду сутності методу перетворення частотної змінної.
Практично всі фільтри верхніх частот можна одержати з фільтрів нижніх частот, якщо в останніх кожну індуктивність замінити ємністю, а кожну ємність - індуктивністю. (мал.1)
2
мал. 1 а ). б ). в ).
Затухання ФНЧ виражається співвідношенням дб., тобто є парною функцією частоти , з цього слідує - крива затухання буде симетрична відносно осі ординат (мал. 2)
мал. 2
Ліва частина цього графіку відповідає взаємному розміщенню смуги затримки та смуги пропускання для фільтрів верхніх частот. (мал. 3)
мал. 3
Підберемо таку функцію, яка б перетворила від'ємну піввісь (мал.2) в додатну (мал. 3) піввісь.
При цьому точці (мал. 2) повинна відповідати точка “0” (мал. 3)
"-1" ""
"0" ""
Очевидно, що такою функцією буде така:
(1)
Таким чином, всі вирази, одержані раніш для фільтрів нижніх частот, будуть вірні і для фільтрів верхніх частот, якщо в цих виразах визначатиметься із співвідношення (1).
Нормуванні по частоті дозволяє при розрахунках фільтрів верхніх частот з характеристиками Баттерворта, Чебишева, Золотарьова або з довільним розміщенням сплесків затухання повністю використовувати всі методи, формули, номограми та таблиці, одержані для фільтрів верхніх частот. В якості прикладу на (мал. 4) наведені схеми та характеристики деяких фільтрів верхніх частот з рівнохвильовими характеристиками затухання, а на (мал. 5) схема фільтра к -2,0 апаратури П-303 та графік частотної залежності робочого затухання цього фільтру.
2
мал. 4
2
мал. 5
2. Смугові фільтри та інші типи індукційних фільтрів

Смуговий фільтр може бути утворений з фільтру нижніх частот, якщо в останньому кожну індуктивність замінити послідовним коливальним контуром без втрат, а кожну ємність - паралельним, при чому резонансні частоти всіх контурів взяти однаковими (мал. 6)
2
ФНЧ СФ
мал.6
Тоді до частоти резонансу характер опору віток, одержаного фільтра, буде таким самим як і у фільтра верхніх частот, а після частоти резонансу - таким самим як у фільтра нижніх частот. Фільтр же в цілому буде смуговим фільтром, при ому частота резонансних контурів буде очевидно знаходитись у смузі пропускання фільтру.
Підберемо таку функцію яка б перетворила вісь частот () (мал. 2) у піввісь () (мал. 7)
мал. 7
При цьому:
Точці "-" (мал. 2) повинна відповідати точка "0" (мал. 7).
"-1" ""
"0" ""
"1" ""
"" ""
Таке перетворення може зробити функція:
(2)

Таким чином, всі вирази, одержані раніш для фільтрів нижніх частот, залишаються справедливими і для розглядуваних смугових фільтрів, якщо в цих виразах визначати з відношення (2).
Важливо відмітити, що частотні характеристики розглянутих фільтрів володіють однією характерною особливістю, яка обумовлена тим, що функція (2) приймає рівні по абсолютній величині і обернені за знаком значення для будь-якої пари частот та зв'язаних співвідношенням , тобто для будь-якої пари частот, розміщених симетрично відносно осі части , яка в свою чергу являється середньою геометричною частотою смуги пропускання фільтра.
Отже затухання фільтра при частотах та буде однаковим, тобто характеристика затухання будь-якого речового фільтра, одержаного з допомогою перетворення (2) завжди буде геометрично симетрична відносно частоти відповідає графічна ілюстрація на (мал. 7)
Тому подібні фігури одержали назви фільтрів з симетричними (геометричними) характеристиками загасання.
Практичне використання фільтрів, розглянутих вищ и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.