На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Основные модификации зеркальных антенн, в которых для фокусирования высокочастотной электромагнитной энергии используется явление зеркального отражения от криволинейных металлических поверхностей (зеркал). Конструктивные особенности и типы антенн.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 25.12.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


21
Министерство науки и образования Украины
Черкасский государственный технологический университет
Кафедра радиотехники



КУРСОВАЯ РАБОТА
По дисциплине: «Приборы СВЧ и антенны»
На тему: «Зеркальные антенны»
Проверил: Исполнил:
Преп. Даник.В.О. студ. 4-го курса
гр. ЗРТ-33, ФЕТ
Соболев А.В.


Черкассы, 2007
Содержание
Введение
1. Действие зеркал
2. Влияние фазовых отклонений
3. Направленность действия параболического зеркала
4. Применение параболических зеркал в антенной технике
5. Другие зеркальные антенны
Итог
Список использованной литературы
Введение
Антенна выступает в роли промежуточного звена радиоприбором - приемником или передатчиком - и окружающим пространством, являясь своего рода преобразователем электромагнитной энергии, её трансформатором. Передающая антенна, питаемая энергией радиопередатчика, возбуждает в пространстве электромагнитное поле, несущее сигнал. Незначительную часть энергии поля улавливает приемная антенна, создающая на входе радиоприемника эдс, достаточную для воспроизведения сигнала.
С изобретением радио начинается история антенной техники, которая проходит свои этапы вместе с развитием радиотехники. Однако элементы, излучавшие электромагнитную энергию и отбиравшие ее из пространства, были известны уже в опытах Генриха Герца (1886-1888гг.) до возникновения самой идеи об использовании электромагнитного поля для передачи сигналов. Впоследствии нашим знаменитым соотечественником А. С. Поповым была изобретена первая радиотехническая антенна.
Вслед за первыми шагами радиотехники, когда использовались искровые и дуговые генераторы, задачам радиосвязи были подчинены длинные и средние, а затем и короткие волны. За это время - к середине тридцатых годов - возникли и сформировались все основные типы проволочных антенн, или «радиосетей». Антенны длинных и средних волн по своим размерам почти всегда меньше длины волны. Освоение же коротких волн означало качественный скачок в антенной технике, так как открылась реальная возможность построения антенн, значительно превышающих длину волны и поэтому обладающих большой направленностью действия. Тенденция к дальнейшему укорочению рабочей волны ещё сильнее проявляется в последующий период, начиная с предвоенных лет. Как известно, благодаря появившимся недавно оптическим квантовым генераторам практике теперь доступны когерентные электромагнитные колебания светового диапазона, что открывает совершенно новые возможности в радиосвязи.
1. Действие зеркал

Рефлек-тором для антенны являлась такая же антенна, расположенная на расстоянии четверти волны и питаемая в опережающей квадратуре либо не присоединенная к источнику,- «пассивная» антенна. В последнем случае отражение оказывалось неполным: антенна с пассивным рефлектором обладает некоторым обратным излучением.
Рис. 1
Между тем, можно представить совершенный пассивный рефлек-тор в виде расположенной за антенной Р (рис. 1а) идеально проводящей плоскости. Если расстояние Н выбрано так, что при отражении в направлении нормали волна приходит к Р в фазе с прямым излучением, то амплитуда поля в этом направлении удваивается. В случае параллельного отражающей плоскости линей-ного вибратора (рис. 1б) ее действие эквивалентно находящему-ся на расстоянии 2h противофазному вибратору и, следова-тельно, для удвоения излучения по нормали нужно брать
Применяя рассмотренный принцип на практике, не стремятся к максимально возможному увеличению плоского пассивного рефлектора.
Достаточно (рис, 1в), чтобы края этого антенного зеркала были видны из Р под углом 2б0, внутри которого сосредоточено все или почти все обратное (270° > а > 90°) излучение антенны Р. Тогда обратное излучение антенны с зеркалом будет пренебрежимо мало.
В дальнейшем при изучении антенных зеркал будем предполагать, что все размеры системы - в том числе и расстояние облучателя от зеркала - значительно превосхо-дит длину волны, так что применимы правила геометрической оп-тики.
Рис. 2
Следя за ходом лучей, отраженных от плоского зеркала (рис.2а), легко заметить, что угловая ширина пучка лучей, па-дающего на зеркало, при отражении сохраняется. На (рис.2б) для сравнения показано кривое зеркало, поверхность которого спе-циально выбрана с тем расчетом, чтобы пучок лучей, расходящийся из Р, превратить в параллель-ный - с угловой шириной 2а0 = 0°. Такое зеркало создает синфазное поле в своем плоском раскрыве, след которого показан пунктиром на рис.б. В зависимости от характера облучающей антенны оно более или менее близко к полю в раскрыве иде-альной поверхности антенны.
Параболическое зеркало. Покажем, что изображенный на рис.3 про-филь зеркала, собирающего расходя-щийся пучок лучей в параллельный, описывается параболой. На рис. 3 сделаны построения, необходимые для этого вывода. Начало координат совмещено для удобст-ва с точечным облучателем зеркала Р.
Рис. 3
Профиль зеркала можно было бы найти из условия, что при от-ражении от его поверхности должен выполняться закон Снеллиуса: угол отражения равен углу падения. Это привело бы к дифференциальному уравнению кривой. Но проще задаться равенством всех оптических путей из начала координат до плоскости х = 0:
Рассматривая центральный луч, видим, что
Учитывая также равенства
имеем
откуда после простых преобразований получается уравнение пара-болы
где
Величина f называется фокусным расстоянием парабо-лического зеркала.
Уравнение можно записать и в полярных координатах, сделав в выражении
замену
Оно имеет вид
Рис. 4
На рис. 4 введены следующие обозначения: диаметр параболического зеркала D, глубина d и угол раскрыва 2б0; зеркало рис.4а, для которого называется длиннофокусным, а зеркало рис.4б -короткофокусным, так как для него
Внося в (5.69) координаты края зеркала находим следующее соотношение, связывающее его линейные раз-меры с фокусным расстоянием:
Рис.5
Как видно из рис. 5
С учетом это выражение можно переписать в виде
В антенной технике применяются зеркала в виде параболоида вращения (рис. 5a), а также в виде параболического цилиндра (рис.5б). В первом случае облучателем служит точечная, а во втором - линейная антенна. Соответственно нужно рассматривать как меридиональное сечение параболоида вращения либо как сечение параболического цилинд-ра плоскостью, к которой линейный облучатель нормален.
2. Влияние фазовых отклонений

Подобно тому как это было сделано при рассмотрении линз, выясним ряд вопросов, связанных с влиянием фазовых искажений в раскрыве антенны. Обычно в раскрыве зеркала допускается фазовое отклонение Дц= р/2.
Рис.6
На рис.6а показано изменение хода центрального и крайнего лучей при смещении облучателя зеркала вдоль фокальной оси. Раз-ность их фаз в раскрыве есть
откуда допустимое смещение равно
Смещение облучателя - не единственная причина фазового отклонения в раскрыве, поэтому принято брать Дц = р/8
Тогда
Выбор необходимой точности изготовления зеркала поясняется рис.6б, где пунктиром показан требуемый профиль зеркала, а сплошной линией -фактически выполненный. Составляя разность хода лучей и соответствующую разность фаз
(Д-отклонение некоторой точки поверхности зеркала вдоль луча точечного источника), получаем следующее выражение для линей-ного допуска:
и если разрешается Дц = р/8, то
Наименьшее отклонение допускается в центре зеркала зеркала (а' = 0):
Итак, по краям зеркало может быть сильнее деформировано без существенного ухудшения его свойств.
3. Направленность действия параболического зеркала
Поле излуче-ния, создаваемое зеркалом, в принципе можно найти, зная наведен-ный облучателем на его поверхности электрический ток. Вместо тока на «освещенной» стороне можно рассматривать поле в плоско-сти раскрыва, которое заменяется электрическим и магнитным эквивалентными поверхностными токами либо распределением источников типа элемента Гюйгенса. Однако и для определения тока на поверхности зеркала, и для нахождения поля в его раскрыве нет иного практического приема, кроме предположения, что каждый элемент зеркала действует как элемент плоскости, что, естественно, дает лишь приближенный результат. При этом, в част-ности, не учитываются краевая дифракция и токи на «неосвещен-ной» стороне зеркала.
Согласно известному правилу плотность поверхност-ного тока зеркала есть
где Нs -- магнитное поле на металлической поверхности.
Рис. 7
Каждый ее элемент, как уже отмечалось, принимается за уча-сток бесконечной плоскости, и соответственно этому Нs находится как удвоенная (при отражении) касательная к зеркалу компонента магнитного поля облучателя Н:
По известной характеристике направленности облучателя (обыч-но считают, что зеркало находится в его дальней зоне) вычисляют распределение тока на всем зеркале. Затем поле излучения зерка-ла находится как суперпозиция полей всех излучающих элементов. Это можно сделать как путем непосредственного интегрирования полей, создаваемых токами зеркала в дальней зоне, так и при по-мощи векторного потенциала.
Второй способ определения направленности действия зеркаль-ной антенны, при котором исходят из поля в его раскрыве, назы-вается «апертурным». Пусть рассматривается зеркало в виде пара-болоида вращения, и поле в раскрыве по известной характеристике облучателя уже найдено. Объяснению дальнейших действий служит рис.7, на котором дальнее поле описывается в сферических координатах (r, х, б), а поле в раскрыве -- в штрихованных сфери-ческих координатах (r, 90°-э, б'). Дальняя точка наблюдения М (r, х, б) лежит в плоскости б = 0, являющейся также плоскостью чертежа. Начало координат находится в центре раскрыва, и соответ-ственно этому в раскрыве х' = 90°,
Пусть комплексная амплитуда электрического поля излучения в точке М (r, х , 0), создаваемого элементом раскрыва в окрестности точки Р (r', 0, б'), есть
где q(r', б') - взятая с требуемой амплитудой функция плотности источников в раскрыве . Как видно из рис. 7,
причем
Учитывая это и интегрируя dЕm по раскрыву, имеем следующее выражение для электрического поля дальней зоны антенны в плос-кости б = 0:
Для получения простого результата идеализируем задачу, взяв qm(r', б') = e0 const, т. е., в сущности, приняв раскрыв зеркала за идеальную поверхностную антенну в форме круга. Тогда
Принимая во внимание, что интегрирование по б' приводит к функции Бесселя нулевого порядка, которая имеет интегральное представление
пишем
а интегрирование по r' дает
Из этого выражения нетрудно получить нормированную харак-теристику направленности зеркала в меридиональной плоскости учитывая, что
В результате
Далее, нетрудно найти угловую ширину главного максимума излучения по нулям. Первый корень уравнения J1 (x) = 0 равен В11 = 3,832.
Полагая sin х0 ? х0, имеем
Полученные формулы оказываются бо-лее достоверными для длиннофокусных зер-кал, облучаемых обычно равномернее, чем короткофокусные.
Учет действительных характеристик на-правленности реальных облучателей требует уже весьма громоздких математических действий, которые не приводятся. Остановимся лишь на некоторых результатах, обычно ис-пользуемых при расчете зеркальных антенн.
Подробнее других изучено параболическое зеркало, облучаемое элементарным электрическим вибратором, снабженным плоским контррефлектором (рис.8). Характеристика направленности в меридиональной плоскости при этом выражается формулой


Где
Знак плюс берется в том случае, когда меридиональная плоскость проходит через облучающий вибратор (плоскость Е), а минус -- в случае перпендикулярной вибратору меридиональной плоскости (плоскость Н).
Кнд антенны в которой коэффициент использования раскрыва x равен:
График функции х(R/f) показыва-ет, что найвыгоднейшим при данном типе облучателя является отношение радиуса зеркала к фокусному расстоянию:
при котором
Существование оптимума объясняется следующим образом: при удалении облучателя кнд антенны должен был бы возрастать в результате повышения равномерности облучения, однако при этом уменьшается угол, под которым видно зеркало (рис.8а), так что увеличивается доля энергии, уходящей за его край, что снижает кнд.
Рис.8
Короткофокусное зеркало (рис.8б) облучается почти без потерь, но неравномерно. Можно убедиться, что максимальный коэффициент использования соответствует состоянию, при котором амплитуда поля дипольного облучателя на краю зеркала составляет около 1/3 максимальной.
На рис.9а, б показано распределение тока в зеркале при дипольном облучателе. Ток, наводимый на короткофокусном зерка-ле (рис.9б), собирается у двух полюсов, расположение которых нетрудно определить из рис.9в: они лежат на пересечениях оси облучателя с поверхностью параболоида.
Рис. 9
В результате существова-ния полюсов часть зеркала несет противофазный ток, уменьшающий излучение в осевом направлении. Как говорят, зеркало имеет при этом «вредные зоны». Однако и в тех случаях, когда вредных зон нет, нельзя игнорировать специфического искривления линий тока в результате неоднородности поля облучателя.
4. Применение параболических зеркал в антенной технике

Соединение параболического зеркала с облучателем называют зеркальной или параболической антенной и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.