На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Методи й засоби комп'ютерної обробки зображень. Розгляд двох снуючих методв покращення якост зображень, основаних на субєктивному сприйнятт роздльної здатност клькост кольорв. Порвняльна характеристика вейвлет-методу та градєнтського потоку.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 03.12.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


2
Міністерство освіти та науки України
Вінницький національний технічний університет

Факультет АКСУ

Кафедра АІВТ

Звіт на тему :

Зменшення „Блочного ефекту ” при передачі зображення

з дисципліни

“Основи науково-дослідної роботи”

Вінниця 2007

Зменшення „Блочного ефекту” при передачі зображення

Проблеми , що виникають при збільшенні чи передаванні зображення, задають чи мало клопоту для більш детального перегляду. Існує чи - мало методів для покращення зображення, серед яких вейвлет-метод та метод градієнтного потоку.

Розглянемо з існуючих методів покращення якості зображень ці два методи, які основані на суб'єктивному сприйняттю роздільної здатності і кількості кольорів. При однакових значеннях параметрів пристрою графічного виводу можна створити ілюзію збільшення роздільної здатності або кількості кольорів. При чому суб'єктивне покращення одної характеристики виконується за рахунок погіршення іншої.

Робота проводиться з метою виявлення можливостей та функцій, які надаються методам, а також для порівняння отриманих результатів.
1. Аналіз вєйвлет метода і метода градієнтського потоку.
2. Виявити можливості та основні функції
3. Проаналізувати та оцінити отримані результати.
4. Провести порівняльну характеристику.
5. Зробити висновки.
Зміст

Вступ
Аналіз вейвлет метода і метода градієнтського потоку
Можливості та основні функції
Аналіз та оцінка результатів
Порівняльна характеристика
Висновки
Використані джерела
Вступ

В даний час існує досить багато спеціалізованих автоматизованих систем для аналізу зображень. Як правило спеціалізовані АС жорстко прив'язані до об'єкту діагностики, і їх адаптація до нового об'єкту діагностики практично зводиться до розробки нової АС, яка б враховувала особливості об'єкту діагностики.
Автоматизовані системи "загального призначення" як правило включають велику бібліотеку алгоритмів обробки зображень. Проте саме із-за їх універсальності особливості конкретного об'єкту діагностики не можуть бути враховані.
Деякі ідеї теорії вейвлетов з'явилися дуже давно. Наприклад, вже в 1910 році А.Хаар опублікував повну ортонормальну систему базисних функцій з локальною областю визначення (тепер вони називаються вейвлетами Хаара). Перша згадка про вейвлетах з'явилася в літературі по цифровій обробці і аналізу сейсмічних сигналів (роботи А. Гроссмана і Ж.Морле). Останнім часом виникло і оформилося цілий науковий напрям, пов'язаний з вейвлет-аналізом і теорією вейвлет-перетворення. Вейвлети широко застосовуються для фільтрації і попередньої обробки даних, аналізу стану і прогнозування ситуації на фондових ринках, розпізнавання образів, при обробці і синтезі різних наприклад мовних, медичних, для вирішення завдань стискування і обробки зображень, при навчанні нейромережей і в багатьох інших випадках.

Вейвлет метод


У цифрових системах широко використається метод Wavelet. Послідовність дій, що використає метод стиску Wavelet, у цілому аналогічна алгоритму JPEG. Принципова різниця складається в способі перетворення відеосигналу: метод стиску JPEG використає дискретно-косинусное перетворення сигналу, тоді як метод стиску Wavelet представляє сигнал як суперпозицію кінцевих у часі негармонійних функцій - вейвлетів.
Метод стиску Wavelet перетворить зображення по наступному алгоритмі:
- Перетворення колірного простору
- Вейвлет-перетворення
- Квантування
- Кодування
Градієнтський метод
Різним об'єктам на зображеннях відповідають області з більш-менш однаковими значеннями яскравості. На границях же яскравість істотно міняється. Мірою зміни деякої величини є її похідна. На зображенні величина яскравості змінюється в просторі. Просторова похідна - це градієнт, що крім величини має ще й напрямок, тобто являє собою вектор.
Величина або модуль вектора градієнта визначає "силу" границі, тобто наскільки в даній крапці границі відрізняються яскравості об'єкта і його оточення. Напрямок вектора градієнта показує напрямок найбільшої зміни яскравості, тобто цей вектор спрямований перпендикулярно границі. Найчастіше напрямок границі не має значення, і в таких випадках досить визначити тільки величину модуля градієнта. Коли ж цей напрямок становить інтерес, необхідно обчислювати повний вектор градієнта.
Можливості та основні функції: Вейвлета і багатомасштабного аналізу.
Розглянемо завдання, що дуже часто зустрічається на практиці: у нас є сигнал (а сигналом може бути все, що завгодно, починаючи від запису показань датчика й чи оцифрованной мовою або зображенням). Ідея многомасштабного аналізу (multіscale analysіs, multіresolutіonal analysіs) полягає в тім, щоб глянути на сигнал спочатку впритул - під мікроскопом, потім через лупу, потім відійти на парі кроків, потім подивитися здалеку (мал.1).
Мал. 1. Приклад багатомасштабного аналізу зображення
Що це нам дає? По-перше, ми можемо, шляхом послідовного збільшення (або зменшення) сигналу виявляти його локальні особливості і підрозділяти їх по інтенсивності. По-друге, у такий спосіб виявляється динаміка зміни сигналу залежно від масштабу. Якщо різкі перегони (наприклад, аварійне відхилення показань датчика) у багатьох випадках видно неозброєним оком, то взаємодії подій на дрібних масштабах, що переростають у великомасштабні явища (так, потужний транспортний потік складається з руху багатьох окремих автомобілів), побачити дуже складно. І навпаки, зосередившись тільки на дрібних деталях, можна не помітити явищ, що відбуваються на глобальному рівні[1].
Ідея застосування вейвлетов для многомасштабного аналізу полягає в тім, що розкладання сигналу виробляється по базисі, утвореному зрушеннями й разномасштабними копіями функції-прототипу (тобто вейвлет-перетворення по своїй суті є фрактальним). Такі базисні функції називаються вейвлетами (wavelet), якщо вони визначені на просторі L2(R) (простір комплекснозначних функцій f(t) на прямій з обмеженою енергією), коливаються навколо осі абсцис і швидко сходяться до нуля в міру збільшення абсолютного значення аргументу (мал.2). Обмовимося відразу, що це визначення не претендує на повноту й точність, а дає лише якийсь словесний портрет вейвлета. Таким чином, згортка сигналу з одним з вейвлетов дозволяє виділити характерні риси сигналу в області локалізації цього вейвлета, причому чим більший масштаб має вейвлет, тим більше широка область сигналу буде впливати на результат згортки.
Мал. 2. Вейвлет Сомбреро
Відповідно до принципу невизначеності, чим краще функція сконцентрована в часі, тим більше вона розмазана в частотній області. При перемасштабуванні функції добуток тимчасового й частотного діапазонів залишається постійним і являє собою площу осередку в частотно-часовий (фазової) площині. Перевага вейвлет-перетворення перед, перетворенням Габора полягає в тім, що воно покриває фазову площину осередками однакової площі, але різної форми (мал.3). Це дозволяє добре локалізувати низькочастотні деталі сигналу в частотній області (переважні гармоніки), а високочастотні - у часовий (різкі перегони, піки й т.д.). Більше того, вейвлет-аналіз дозволяє досліджувати поводження фрактальних функцій [2].
Мал.3. Фазова площина вейвлет-перетворення
Ортогональне вейвлет-перетворення

Вейвлет-перетворення несе величезну кількість інформації про сигнал, але, з іншого боку, має сильну надмірність, тому що кожна крапка фазової площини впливає на його результат. Загалом кажучи, для точного відновлення сигналу досить знати його вейвлет-перетворення на деякої досить рідких ґратах у фазовій площині (наприклад, тільки в центрі кожного осередку на мал.3). Отже, і вся інформація про сигнал утримується в цьому досить невеликому наборі значень. Ідея тут полягає в тім, щоб масштабувати вейвлет у деяке постійне число раз, і зміщати його в часі на фіксовану відстань, що залежить від масштабу. При цьому всі зрушення одного масштабу повинні бути попарно ортогональні - такі вейвлети називаються ортогональними[3]. При такім перетворенні виконується згортка сигналу з деякою функцією (так званою скейлинг-функциєю і з вейвлетом, пов'язаним із цією скейлинг-функцією. У результаті ми одержуємо згладжену версію вихідного сигналу й набір деталей, що відрізняють згладжений сигнал від вихідного. Послідовно застосовуючи таке перетворення, ми можемо одержати результат потрібної нам ступеня детальності (гладкості) і набір деталей на різних масштабах - те, про що говорили на початку статті. Більше того, застосувавши вейвлет-перетворення до деталі сигналу, що зацікавила нас, ми можемо одержати її збільшене зображення. І навпаки, відкинувши несуттєві деталі й виконавши зворотне перетворення, ми одержимо сигнал, очищений від шумів і випадкових викидів (наприклад, забрати випадково, що потрапила в кадр птаха, на фотографії будинку).
Дискретне вейвлет-перетворення та інші напрямки вейвлет-аналізу:
Очевидно, ідея використати вейвлет-перетворення для обробки дискретних даних є досить привабливою (дискретизація даних необхідна, наприклад, при їхній обробці на ЕОМ). Основні труднощі полягають у тім, що формули для дискретного вейвлет-перетворення не можна одержати просто дискретизацією відповідних формул безперервного перетворення. На щастя, І. Добешу вдалося знайти метод, що дозволяє побудувати (нескінченну) серію ортогональних вейвлетів, кожний з яких визначається кінцевим числом коефіцієнтів. Стало можливим побудувати алгоритм, що реалізує швидке вейвлет-перетворення на дискретних даних (алгоритм Малла). Перевага цього алгоритму, крім усього вищесказаного, полягає в його простоті й високій швидкості: на розкладання, і на відновлення потрібно порядку cN операцій, де c - число коефіцієнтів, а N - довжина вибірки[4].
Останнім часом теорія вейвлет-перетворення переживає просто революційний ріст. З'явилися й розвиваються такі напрямки, як біортогональні вейвлети, мультівейвлети, вейвлет-пакети, ліфтинг і т.д.
Градієнтський метод

У літературі існує кілька підходів до аналізу многомасштабної інформації, тобто, до побудови картини контурів об'єктів на основі градієнтних зображень різних масштабів[5]. Існують підходи, у яких аналіз градієнтних зображень проводиться від грубих масштабів до точних, також існують підходи де аналіз виконується, навпаки, від до точних масштабів до грубих і підходи, у яких аналіз не залежить від послідовності розглядання зображень. Дані підходи розрізняються й по принципах побудови градієнтного зображення одного масштабу, тобто , видом застосованого оператора градієнта. Але все-таки ключовим є питання про те, яким образом варто комбінувати наявну многомасштабную інформацію для побудови кінцевої картини границь. Бергольм, один з перших, хто звернувся до теми многомасштабного визначення контурів, пропонує метод, що полягає в послідовному аналізі многомасштабной інформації від грубих масштабів до точного. Такий підхід дозволяє значно зменшити вплив шуму, і в такий спосіб уникнути помилкового визначення контурів одержуваних внаслідок присутності на зображенні шуму, і, у теж час, дає прийнятну картину границь. Однак недоліком даного методу є можливий поділ контурів, обумовлених на грубих масштабах, на трохи окремих при переході до більше точного масштабу. Стратегії розглядання градієнтних зображень від грубих масштабів до точного також дотримуються й інші автори [6]. Однак у тих випадках, коли зображення містить невеликі об'єкти з різкими границями, точне визначення границь цих об'єктів, при русі від грубих масштабів д точних, нам представляється скрутним, тому що на градієнтних зображеннях грубого масштабу виникає значне переміщення положення різких контурів.
Мал. 4. (а) Профиль вихідного зображення. (б) Градієнтне зображення точного масштабу. (в) Градієнтне зображення грубого масштабу. (г) Многомасштабне градієнтное зображення
Інші автори дотримуються підходу, при якому остаточна картина границь складається на основі аналізу градієнтних зображень від точних масштабів до не точних. При цьому, основними завданнями при такому підході є зменшення впливу шуму, до якого чутливі оператори градієнта малого розміру, і комбінування границь, отриманих на точних масштабах, із плавними границями, які визначаються лише на великих масштабах. При успішному рішенні цих проблем підхід до аналізу градієнтних зображень від точних масштабів, представляється нам найбільш кращим для багатьох практичних випадків, у яких необхідно досить точне визначення контурів об'єктів. Характерні приклади таких завдань - це сегментація сканованих зображень сторінок книг, газет, журналів, що містять велику кількість об'єктів невеликого розміру, наприклад, букв і символів. Завдання сегментування таких зображень залишається, як і раніше, актуальної, особливо, для випадку кольорових зображень[7].
Багато методів сегментації, засновані на визначенні контурів об'єктів, наприклад, ватершед-перетворення, використають як основу для проведення сегментації градієнтів зображення. Однак пропоновані в літературі методи многомасштабного визначення контурів дають як результат уже готову картину контурів, а не складене на основі многомасштабной інформації комбіноване градиінтне зображення, доступне для подальшої обробки. Тому, розробка методу, що дозволяє одержати градиєнтне зображення, складене на основі многомасштабной інформації, що далі можна було б використати в різних методах сегментації, заснованих на обробці градиентного зображення.
Багатомасштабний градієнтський аналіз

В результаті оператора градієнта, використовуваного для побудови градиєнтного зображення певного масштабу, був и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.