На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Регистрация микроскопических изображений в УФ лучах производится двумя способами. В плоскости формирования изображения в УФ лучах помещают флюоресцирующий экран, люминофор которого при поглощении УФ лучей испускает световые лучи видимого диапазона.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 24.12.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


10
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
"Измерительный контроль в оптической микроскопии"
МИНСК, 2008

1. Оптическая (световая) микроскопия

Простейшим микроскопом является двухлинзовый микроскоп. На рис.2. схематично показано как формируется микроскопическое изображение в системе двух собирающих линз. Первая из них - объектив, формирует действительное увеличенное изображение объекта АВ - А'В'.

Рис.1. Классификация оптических методов НК

Рис.2. Схема двухлинзового микроскопа

1 - объектив; 2 - окуляр; 3 - измерительная шкала или сетка

Изображение А'В' затем рассматривается в окуляр (вторая линза), и окончательное изображение А"В", получаемое при этом, является мнимым. Формированию изображения в световом микроскопе сопутствуют, согласно теории Аббе, два эффекта, снижающих разрешающую способность: сначала дифракция света на микроскопических деталях объекта, затем, после прохождения дифрагированных лучей через линзу, их интерференция. Эти эффекты не позволяют изучать микрообъекты размером менее 10-6 м.

Чтобы изучать более малые микрообъекты применяют метод "тёмного поля" (рис.3). Его принцип состоит в том, что исследуемый прозрачный объект освещается косыми лучами, которые при отсутствии рассеяния или преломления не попадают в объектив микроскопа. Если же объект исследования содержит включения, также прозрачные, но с другим показателем преломления, то лучи, прошедшие через эти включения и изменившие своё направление, попадают в объектив и визуализируют их. Поскольку основная часть световых лучей минует объектив, поле зрения остаётся тёмным и на его фоне видны светлые изображения микровключений. В микроскопе, реализующем метод "тёмного поля" (ультрамикроскопе), видны частицы размером 2*10-9 м. Важными областями применения ультрамикроскопов является контроль чистоты атмосферы, воды, поверхностей и т.д. Однако недостатком таких микроскопов является невозможность измерения геометрических размеров микровключений и дефектов (они обнаруживаются, но чёткого очертания их формы не получается).

Рис.3. Образование темнопольного изображения при прямом (а) и косом (б) освещении объекта:

1 - осветитель; 2 - зеркало; 3 - затемняющая пластина; 4 - объектив;

5 - изображение светлого дефекта на тёмном поле

Одним из перспективных направлений повышения эффективности контроля ИЭТ является использование ультрафиолетовых (УФ) лучей. Основной эффект при этом заключается в повышении почти в два раза разрешающей способности УФ микроскопа по сравнению со световым. Имеет место и ещё один положительный эффект: повышение чёткости изображений. В основу метода положено явление сильного различия в поглощении УФ лучей различной длины волны различными веществами.

Снимая микроскопическое изображение одного и того же объекта несколько раз в УФ - лучах разной длины волны, можно получить набор микрофотографий, в разной степени отражающих различные детали объекта исследования. Затем чёрно-белые негативы (или позитивы) этих изображений с помощью хромоскопа проецируют на общий экран, поставив перед каждым изображением фильтр определённого цвета. В результате на экране получается многоцветное изображение, хорошо выявляющее детали объекта.

Регистрация микроскопических изображений в УФ лучах производится в основном двумя способами. В первом случае в плоскости формирования микроскопического изображения в УФ лучах помещают флюоресцирующий экран, люминофор которого при поглощении УФ лучей испускает световые лучи видимого диапазона. Во втором случае в плоскости изображения помещают фотокатод электронно-оптического преобразователя (ЭОП), испускающего под действием ультрафиолета фотоэлектроны. Фокусируя электроны в плоскости флуоресцирующего экрана ЭОПа можно получить видимое изображение исследуемого объекта.

2. Измерительный контроль в оптической (световой) микроскопии

При производстве комплектующих изделий для ЭА и СМЭ, в условиях наиболее распространённой в настоящее время планарно-эпитаксиальной технологии, неразрушающий 100% -ный контроль интегральных микросхем (ИМС) на этапах, предшествующих созданию на кристалле контактных площадок, может быть осуществлён по двум основным направлениям: измерение различного рода геометрических величин (длина, ширина, толщина, глубина, а также размеры и плотность поверхностных дефектов) и измерение ряда физико-химических параметров, к числу которых относятся удельное сопротивление, состав и структура материалов, образующих технологические слои, концентрация и подвижность носителей заряда.

Геометрические размеры элементов определяют параметры и свойства ИМС, а отклонение размеров элементов приводят не только к отклонениям технических характеристик ИМС, но и к выходу их из строя. До сих пор для контроля линейных размеров широко используются визуальный метод и универсальные (биологические и др.) микроскопы, не имеющие ни требуемой точности, ни необходимой производительности. При этом, как правило, отсутствует автоматизация процесса и документирование результатов измерений.

Визуальный метод может быть усовершенствован и условия наблюдений и измерений улучшены за счёт применения телевизионной и лазерной техники. При этом облегчается труд оператора, снижается его утомляемость, возможность появления промахов и грубых ошибок в измерениях, повышается производительность труда, что всегда важно при производственном контроле, однако точностные характеристики визуального метода остаются прежними. Телевизионные микроскопы для визуальных измерений и контроля фактически представляют собой простое сопряжение обычного оптического микроскопа с телевизионной установкой, где изображение рассматривается оператором не через окуляр, а на экране телевизионного монитора (рис.4).

В ряде случаев в производственном контроле использование таких микроскопов вместо оптических имеет преимущества, например при достаточно высокой общей освещённости производственного помещения. При этом утомляемость оператора при наблюдении и измерениях с использованием телевизионного экрана значительно ниже, так как не требуется постоянная аккомодация зрения, могут быть подобраны оптимальные яркость и контраст изображения - за счёт специальной обработки видеосигнала (фильтрация постоянной составляющей, коррекция чёткости, выбор оптимальной амплитудно-частотной характеристики усилителей и т.д.). Это особенно важно при наблюдении таких малоконтрастных объектов, какими являются ИМС. Кроме того, облегчаются общие условия наблюдения и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.