На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Использование наилучшего из числа возможных алгоритмов измерения, способность трансформации алгоритма измерений в процессе его выполнения. Высокие требования к точности и надежности приборным интеллектуальным аналогово-цифровым преобразователям.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 27.02.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


2

Введение

Отличительной особенностью ИнИС является способность определять и использовать наилучший из числа возможных алгоритмов измерения, способность трансформации алгоритма измерений в процессе его выполнения. Важным элементом таких ИнИС является аналого-цифровой преобразователь (АЦП), к которому предъявляются, высокие требования по точности и надежности. Поэтому для работы в ИнИС АЦП должны обладать, в том числе и надлежащим запасом отказоустойчивости, т.е. способностью продолжать функционирование при наличии отказавших компонентов. Широкое распространение находят АЦП на основе активной отказоустойчивости, когда при помощи средств самоконтроля (ССК) осуществляется автоматическое обнаружение неисправностей, происходящих в АЦП, с последующим их устранением за счет реконфигурации устройства или за счет замены отказавших АЦП на резервные. С одной стороны, ССК позволяют сократить период скрытого отказа, уменьшают количество таких отказов и повышают эффективность структурного резервирования. С другой стороны, реализация функций самоконтроля и самодиагностики требует определенных затрат ресурсов, что приводит к росту суммарной интенсивности отказов и времени выполнения измерений, т.е. к снижению безотказности. В связи с этим весьма актуальной является разработка функциональных схем высокоточных, отказоустойчивых АЦП, имеющих высокие значения достоверности самоконтроля, самодиагностики, обладающих способностью производить автокоррекцию погрешностей измерения и имеющих встроенные средства самоколибровки.

Обычно интеллектуальный датчик имеет АЦП и ЦАП в составе кремниевых чипов. Однако в реальности существуют серьезные технологические трудности, при которых совершенно необходимо разъединение сенсора (датчика) от интеллектуальной части.

Тогда возникает необходимость приборных интеллектуальных АЦП. Обычно принято классифицировать АЦП на последовательные, параллельно-последовательные и параллельные, в том числе:

«Умные» AISП.

Отказоустойчивые последовательные АЦП (ДО АЦП).

Резервируемый АЦП с реконфигурацией.

АЦП с автоматической коррекцией динамических погрешностей и самоконтролем.

АЦП повышенной точности и достоверности самоконтроля.

АЦП со встроенным тестовым самоконтролем.

АЦП с функциональным контроле.

Самоконтролирующие АЦП с замещением и другие.

Принцип работы АЦП последовательного приближения

Принцип работы АЦП последовательного приближения основан на последовательном сравнения измеряемой величины с 1/2, 1/4,1/8 и т.д. от возможного максимального её значения.

Структура АЦП представлена на рис.1. В состав АЦП входят регистр последовательного приближения (РПП), цифроаналоговый преобразователь (ЦАП), компаратор напряжений. Выходы РПП соединены с входами ЦАП. Компаратор сравнивает входное напряжение, преобразуемое в код, и выходное напряжение ЦАП. Выход компаратора соединен с входом РПП. Работа АЦП тактируется импульсами с выхода генератора тактовых импульсов.

АЦП работает следующим образом. После подачи на РПП сигнала «Старт» и прохождения 1 тактового импульса на выходе старшего разряда РПП устанавливается 0, а на остальных выходах - 1, на выходе ЦАП формируется напряжение, равное половине преобразуемого диапазона входных напряжений. Компаратор сравнивает его с входным, и если входное напряжение превышает напряжение с выхода ЦАП, на его выходе устанавливается 1, если меньше - на выходе компаратора устанавливается 0.2 тактовый импульс записывает состояние выхода компаратора в выходной триггер старшего разряда и на выходе следующего разряда РПП устанавливается 0 и снова компаратор сравнивает входное напряжение и напряжение на выходе ЦАП. Далее процедура повторяется со следующими разрядами РПП и после 13 такта на выходе РПП образуется двоичный двенадцатиразрядный код преобразованного входного напряжения и формируется сигнал «Готовность», сигнализирующий об окончании преобразования, и по которому производится запись кода в выходной регистр.

Структура АЦП

АЦП состоит из восьмиканального блока входных повторителя, мультиплексора входных каналов, активного фильтра низких частот, блока автоматического выбора пределов измерения, блока определения знака, масштабирующего усилителя, двухполупериодного выпрямителя среднего значения, устройства выборки-хранения, регистра последовательных приближений, ЦАП, компаратора, схемы управления, тактового генератора.

Блок входных повторителей напряжения необходим для получения требуемого входного сопротивления.

Схема определения знака составлена на компараторе, который переключается при переходе входного сигнала через ноль.

Схема выбора пределов измерения автоматически изменяет коэффициент передачи, т.е. приводит значение входного сигнала к основному пределу измерения равному 1В.

Выпрямитель среднего значения собран на двух операционных усилителях и дает на выходе напряжение, постоянная составляющая которого пропорциональна среднему значению выпрямленного входного напряжения.

Устройство выборки хранения выдает постоянное напряжение на входе АЦП в течение времени преобразования.

Расчет числа разрядов цифрового устройства.

Разрядность АЦП определяется исходя из заданного класса точности. Согласно техническому заданию класс точности преобразователя равен 0.05/0.02. Пределы допускаемой относительной основной погрешности преобразования определяются по формуле:

гдеXmax - больший (по модулю) из пределов измерения;

X - значение измеряемой величины.

Относительная основная погрешность преобразования в конце шкалы прибора не должна превышать 0.05%. Можно определить максимальный шаг квантования ЦАП:

Поскольку максимальный предел преобразователя равен 1В, то максимальный шаг квантования равен 0.5 мВ. Определим разрядность АЦП.

Откуда

= 10.967

Поскольку трудно найти 11-разрядные АЦП, возьмем 12-разрядный АЦП. Тогда шаг квантования будет равен

= 0.244 [мВ]

Расчет необходимого значения частоты дискретизации

Для исключения потери информации после преобразования и устранения избыточности информации в устройстве применяется фильтр низких частот (ФНЧ). Спектральная характеристика ФНЧ должна быть такой, чтобы в полосе пропускания находилось не менее 95% от спектральной мощности входного сигнала. Спектральная мощность оценивается по площади спектра. Расчет площади спектра производится по формуле:

S = 83290 условных единиц.
Частоты f1, f2 и f3 определены в техническом задании и соответственно равны 40, 60 и 220 кГц.
Площадь спектра, ограниченная ФНЧ должна быть не менее 0.95·S = 79130 условных единиц. Путем расчета в программе MathCad 2000 Professional определим, что данное условие достигается на частоте среза fc = 181.5. [кГц].
Согласно теореме Котельникова, минимальная частота дискретизации определяется:
,
гдеfв - верхняя граничная частота, равная 181.5. [кГц]
Однако, может наблюдаться эффект наложения спектров и данный спектр входного сигнала имеет некомпактный вид, поэтому введем коэффициент запаса, равный 1.7.
= 617.1 [кГц]
Значение частоты дискретизации выбираем 625 кГц.
Период дискретизации будет равен
= 1.6. [мкс]
Расчет частоты дискретизации по теореме Бернштейна:
= 22.35 [МГц]
Где Дap - погрешность аппроксимации при восстановлении сигнала по его дискретным значениям. Примем равным 4/3 от шага квантования.
Следовательно, при использовании fд по Котельникову спектр выходного сигнала потерян не будет, но на верхних частотах будет большая погрешность аппроксимации при восстановлении сигнала.
Расчет входной части
В качестве входной части используется повторитель напряжения на операционном усилителе для обеспечения и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.