Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Проведение испытания ЭС на воздействие ультранизких давлений. Параметры вакуумных испытательных установок. Испытание ЭС на воздействие криогенных температур. Выбор типа хладагента. Виды космических испытаний. Работа измерителей парциальных давлений.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 25.01.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство образования Республики Беларусь
Белорусский государственный университет информатики и
радиоэлектроники

кафедра РЭС
РЕФЕРАТ
на тему:
«Испытание ЭС на воздействие ультранизких давлений, криогенных температур. Специальные виды космических испытаний»
МИНСК, 2008
Воздействие ультранизких давлений

Испытание ЭС на воздействие ультранизких давлений проводят для определения способности материалов и элементов ЭС сохранять при таких давлениях свои параметры в пределах, указанных в НТД, а также для проверки правильности принятых схемных и конструктивно-технологических решений. Испытание осуществляют в глубоком вакууме. Минимальная продолжитель-ность испытания равна (или несколько превышает) времени установления стационарного исследуемого процесса или явления. Ориентировочные значения давлений, необходимые для воспроизведения в лабораторных усло-виях основных физических явлений, происходящих в космосе, приведены в табл. 1
Материалы, узлы, элементы, а также ЭС в целом подвергают испытаниям в вакуумных установках. Современная вакуумная испытательная установка -- сложная система, в состав которой входят: вакуумная камера с системой трубопроводов, разнообразные насосы, вакуумметры, термометры, расходомеры криогенных жидкостей, емкости и баллоны с криогенными жидкостями, регуляторы, клапаны и краны, электроприводы, блоки контрольно-измерительной и управляющей аппаратуры.
Параметры вакуумных испытательных установок: рабочий объем камеры от 0,2 м3 (для малогабаритных установок) до 134 000 м3 (установка центра им. Арнольда, США, для испытания космических кораблей); минимальное давление до 10-12 Па; коэффициент возврата молекул Z0~10-2 ...10-2 . Вакуумные испытательные установки различаются также по следующим параметрам: составу остаточных газов; виду откачивающих насосных систем (масляная, безмасляная, парортутная и т.д.); скорости откачки камеры; неравномерности распределения давлений, потоков частиц и температур по объему и внутренней поверхности камеры; диапазону рабочих температур; времени выхода на рабочий режим; производительности и сроку службы.
Многие молекулы газа, покидая поверхность исследуемого объекта, отражаются от стенок испытательной установки и возвращаются на объект. Это происходит многократно до тех пор, пока молекулы не будут захвачены стенками. Отношение числа молекул, возвращающихся на объект в единицу времени, к числу молекул, покидающих его, называют коэффициентом возврата молекул (Z0).
В вакуумных испытательных установках в зависимости от наибольшего давления запуска (максимального давления во входном сечении насоса, при котором он может начать работу) и предельного остаточного давления в вакуумной камере используют насосы предварительной, основной и вспомогательной откачки. Одновременно используют несколько типов насосов из-за избирательной откачной способности насоса каждого типа к удалению различных паров и газов. Наиболее часто применяют комбинацию турбомолекулярного и ротационного (для предварительной откачки) насосов; цеолитового и диффузионного с ловушками на жидком азоте для защиты от миграции паров масел; титанового сублимационного, криогенного, гетероионного или магнитного электроразрядного (для основной и вспомогательной откачки.
Таблица 1 ориентировочные значения давлений, необходимые для воспроизведения основных физических явлений в космосе, при испытании ЭС в лабораторных условиях
Вид испытания
Давление, Па
Проверка механической прочности и герметичности корпусов ЭС при воздействии перепада давлений
~103
Проверка на отсутствие воздушного демпфирования конструкции ЭС при вибрации
?10-1
Проверка теплового режима ЭС при теплопередаче излучением
?10-2
Влияние электрических зарядов, утечек, ионизации на работоспособность ЭС
?10-3
Исследование физических свойств конструкционных материалов (прочности, ползучести, внутреннего демпфирования)
?10-4 (в зависимости от давления насыщенных паров исследуемых материалов)
«Холодная» сварка
<10-5
Излучение процессов испарения и сублимации материалов и их переконденсации
Длина свободного пробега молекул должна быть больше характерного размера установки
Исследование адсорбции и химического взаимодействия остаточных газов с поверхностью материалов
<10-5...10-12
Проверка узлов трения
<10-5...10-12
По принципу действия вакуумные насосы делятся на проточные и сорбционные. Проточные насосы удаляют газ из откачиваемого объема. В сорбционных газ обычно остается внутри насосов в связанном виде на сорбционных поверхностях или подповерхностных слоях; скорость откачки пропорциональна площади сорбирующей поверхности; предельное остаточное давление зависит от процессов десорбции.
По назначению вакуумные насосы делятся на форвакуумные (для создания в системе низкого и среднего вакуума при наибольшем давлении запуска 1-10 Па) и высоковакуумные (для создания высокого и сверхвысокого вакуума).
Иногда между ними ставят промежуточный (бустерный) вакуумный насос. Форвакуумными насосами производят начальное вакуумирование установок, т. е. снижение давления от 1,33-10 Па примерно до 10-1 Па. По достижении требуемого давления эти насосы отключаются и начинают одновременно работать насосы основной и вспомогательной откачки (в диапазоне давлений 10-3... 10-12Па).
Основную откачку вакуумной установки осуществляют обычно криогенными насосами (примерно до 10-12 Па), обеспечивающими огромную скорость откачки, низкий коэффициент возврата, а также остаточный газ, приближающийся по составу к газу в космосе. Эти насосы изготовляют в виде криорешеток различной конфигурации, охлаждаемых специальными хладаген-тами. Эффективным технологическим способом, облегчающим получение ультранизких давлений, является прогревание установок с целью усиленного газоотделения из их отдельных частей. Прогревают, как правило, малогабаритные и иногда среднегабаритные установки.
Для вспомогательной откачки раньше применялись исключительно паромасляные диффузионные насосы. Однако у них есть существенный недостаток -- наличие обратного потока паров масла из насоса в рабочую камеру испытательной установки. Создание ловушек, охлаждаемых жидким азотом, только уменьшает, но не исключает поступление в камеру масляных паров. В космосе такие пары отсутствуют. (Поэтому возникла необходимость применения так называемой «безмасляной» откачки, т. е. откачки насосными системами, не использующими масла и другие органические продукты. В качестве насосов вспомогательной откачки служат криосорбционные и ионные насосы.
Для измерения давления газов ниже атмосферного применяют вакуумметры, действие которых основано на использовании различных физических закономерностей, прямо или косвенно связанных с давлением газа. Так как диапазон давлений в вакуумных установках очень широк (от атмосферного до 10-12 Па), то существуют вакуумметры различных типов: механические, термопарные, ионизационные и др.
Вакуумметры обычно состоят из двух частей: манометрического преобразователя и измерительной установки. Преобразователи вакуумметров имеют неодинаковую чувствительность к различным газам. Если преобразователь проградуирован по воздуху, а применяется для измерения давления других газов, необходимо учитывать относительную чувствительность:
R = Кгв, (1)
где Кг -- чувствительность преобразователя к данному газу; Кв -- чувствительность к воздуху.
Вакуумметры измеряют общее давление газов, присутствующих в вакуумной системе. Однако при оптимизации вакуумных технологических процессов и проведении испытаний ЭС требуется измерять не только общие, но и парциальные давления остаточных газов.
Работа измерителей парциальных давлений (ИПД) основана на принципе ионизации молекул газа и разделении положительных ионов в зависимости от отношения массы к заряду иона (m/q). По характеру используемых электромагнитных полей ИПД можно разделить на статические и динамические. В статических приборах используют постоянные, а в динамических - переменные электромагнитны и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.