На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Квадратурные и аналоговые квадратурные модуляторы и демодуляторы. Цифровые модуляторы с интерполятором и ЦАП, с АЦП и дециматором. Модемные протоколы, в которых используется алгоритм КАМ - его энергетический спектр сигнала и помехоустойчивость.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 25.12.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


~ 4 ~
Оглавление
    Описание алгоритма
    Квадратурные модуляторы и демодуляторы.
      Аналоговые квадратурные модулятор и демодулятор.
      Цифровые модуляторы с интерполятором и ЦАП.
      Цифровые демодуляторы с АЦП и дециматором.
    Модемные протоколы, в которых используется КАМ.
    Характеристики алгоритма.
      Энергетический спектр сигнала.
      Помехоустойчивость алгоритма КАМ.
      Достоинства алгоритма.
      Недостатки алгоритма.
    Треллис-кодирование.
      Треллис-кодирование.
      Декодер Витерби
    Список литературы.

Описание алгоритма [1]

При использовании данного алгоритма передаваемый сигнал кодируется одновременными изменениями амплитуды синфазной (I) и квадратурной (Q) компонент несущего гармонического колебания (fc), которые сдвинуты по фазе друг относительно друга на р/2. Результирующий сигнал Z формируется в результате суммирования этих колебаний. Таким образом, QAM -модулированный дискретный сигнал может быть представлен соотношением:

, где

t - изменяется в диапазоне ;

m - порядковый номер дискрета времени;

- шаг квантования входного сигнала по времени;

p - шаг квантования входного сигнала по амплитуде;

и -- модуляционные коэфициенты ().

Этот же сигнал также может быть представлен в комплексном виде:

, или , где:

- алгоритм изменения амплитуды модулированного сигнала;

- алгоритм изменения фазы модулированного сигнала.

Таким образом, при использовании квадратурной амплитудной модуляции передаваемая информация кодируется одновременными изменениями амплитуды и фазы несущего колебания. На рисунке 1 представлен принцип формирования результирующего колебания Z путем суммирования вектора квадратурной составляющей Q с вектором синфазной составляющей I.

Рисунок 1
Амплитуда вектора Z определяется соотношением Am, а угол, который этот вектор образует с осью абсцисс, определяется соотношением цm.
Для данного алгоритма существенно, что при модулировании синфазной и квадратурной составляющей несущего колебания используется одно и то же значение шага изменения амплитуды. Поэтому окончания векторов модулированного колебания образуют прямоугольную сетку на фазовой плоскости действительной - Re{Z} и мнимой - Im{Z} составляющих вектора модулированного сигнала. Число узлов этой сетки определяется типом используемого алгоритма QAM. Схему расположения узлов на фазовой плоскости модулированного QAM колебания принято называть созвездием (constellation).
Для указания типа алгоритма QAM принята следующая схема обозначения: QAM-<число >.
Используемое в обозначении алгоритма числовое значение обычно представляет собой число вида 2N и соответствует количеству узлов на фазовой сетке, а также максимальному количеству различных значений вектора модулированного сигнала. Следует отметить, что в данном случае значение N соответствует показателю спектральной эффективности алгоритма.
На рисунке 2 приведена упрощенная структурная схема формирователя QAM-модулированного сигнала.
Рисунок 2
На первом этапе преобразования последовательность битов D {d0, d1,...,dk} от источника сигнала преобразуется в последовательность двумерных модуляционных символов M {m0 m1, mj}. Число битов в каждом определяется значением N (для алгоритма QAM-16 N=log216=4).
Формирователь кодовых символов преобразует двумерный кодовый символ mj в пару кодовых символов бj и вj. Для алгоритма QAM-16 допустимые значения бj и вj принадлежат множеству {1,3,-1,-3} и определяют, соответственно, значения действительной и мнимой координаты вектора модулированного колебания. Сформированные значения А {бj} и B {вj} используются для амплитудной модуляции синфазной I и квадратурной Q составляющих несущего колебания. На последнем этапе преобразования выполняется суммирование этих колебаний и формирование результирующего сигнала Z.
На рисунке 3 представлено расположение векторов модулированного колебания - созвездие для алгоритма QAM-16.
Рисунок 3
Красным цветом отмечены значения модуляционных символов, которым соответствуют указанные точки фазовой плоскости модулированного колебания {m3, m2,m1,m0}. Для алгоритма QAM-16 пара {m3,m2} определяет номер квадранта фазовой плоскости или знаки действительной и мнимой координаты вектора модулированного колебания:
00 Sign(Re{Z})=1, Sign(Im{Z})=1
10 Sign(Re{Z})=1, Sign(Im{Z})=-1
01 Sign(Re{Z})=-1, Sign(Im{Z})=1
11 Sign(Re{Z})=-1, Sign(Im{Z})=-1
Для этого алгоритма пара {m1,m0} определяет значения амплитуды реальной и мнимой координаты вектора модулированного колебания соответственно. В таблице представлены значения кодовых символов б и в, которые соответствуют значениям младших разрядов модуляционного символа {m1,m0}.
m1
m0
бj
вj
0
0
1
1
0
1
1
3
1
0
3
1
1
1
3
3
Преобразование модуляционных символов в кодовые символы выполняется с применением алгоритмов Грея для помехоустойчивого кодирования данных. Так векторам модулированного колебания, которые находятся близко один от другого на фазовой плоскости, ставятся в соответствие значения кодовых символов, которые отличаются значениями только одного бита. В качестве примера могут быть рассмотрены два вектора Z=1+j и Z=1+3j, которым соответствуют кодовые символы {0,0} и {0,1}.

Квадратурные модуляторы и демодуляторы. [2]

Аналоговые квадратурные модулятор и демодулятор.

Основной элемент модулятора и демодулятора - перемножитель (смеситель).

Рисунок 4
Рассматриваемый перемножитель (рис.4) представляет собой балансное устройство (double balanced Gilbert-cell mixer) на четырех транзисторах с дифференциальными входами (сигнальным и опорного колебания) и дифференциальным выходом. Для входного и выходного сигналов перемножитель представляет собой токовый элемент с низким входным (эмиттерным) и высоким выходным (коллекторным) сопротивлениями. Опорное колебание, с которым перемножается входной сигнал, подается в виде напряжения на базы транзисторов. Перемножитель используется вместе с преобразователем "напряжение-ток", включаемым на его эмиттерном входе.
Рисунок 5
В квадратурном модуляторе (рис.5) для суммирования выходных сигналов соответствующие коллекторные выводы двух перемножителей соединяются. При подаче на входы перемножителя сигнала, в общем случае выражаемого как , (1)
где и - модулированные амплитуда и изменение фазы, и опорного колебания с его выхода снимается сумма двух колебаний - с суммарной и разностной частотами: , (2)
где пропорционально . Нужное колебание выделяется путем фильтрации или без фильтрации - в квадратурных преобразователях. Первая составляющая, с суммарной частотой , выделяется в повышающих преобразователях частоты, а вторая, с разностной частотой , - в понижающих преобразователях (при ). При вторая составляющая в выражении (2) равна . В модуляторах реализуется режим с (при ), а в демодуляторах используется составляющая разностной частоты, равной нулю (при ). Основные режимы квадратурных модулятора и демодулятора (см. рис.5) - модуляция/демодуляция сигнала с синфазной I(tn) и квадратурной Q(tn) модулирующими посылками и модуляция/демодуляция аналогового сигнала с одной боковой полосой (ОБП, SSB). В первом режиме модулирующие посылки - аналоговые, с постоянным уровнем в течение каждой посылки и дискретным изменением уровней от посылки к посылке. Уровни содержат информацию о цифровом коде модулирующего сигнала. На выходе модулятора
, (3)
где и - дискретно изменяемые амплитуда и фаза модулированного сигнала. Сигналы на выходе демодулятора
(4)
(5)
пропорциональны входным сигналам модулятора I(tn) и Q(tn). Отметим, что НЧ-составляющие I(tn), Q(tn) на входе модулятора и Iдем(tn), Qдем(tn) на выходе демодулятора представляют сигнал в прямоугольной системе, тогда как сигнал на выходе модулятора и входе демодулятора, согласно выражению (3), - в полярной системе координат. Во втором режиме на квадратурные входы модулятора подаются "комплексные" составляющие модулирующего НЧ-сигнала (со сдвигом 90°). С выхода модулятора, в зависимости от знака суммирования, снимается один из двух модулированных сигналов:
(6)
или
, (7)
содержащих верхнюю или нижнюю боковые полосы (без инверсии и с инверсией спектра, соответственно). В выражениях (6) и (7) и - амплитуды и изменения фазы спектральных составляющих модулирующего сигнала. Пример аналоговых квадратурных модуляторов/демодуляторов - микросхемы серии AD834x фирмы Analog Devices (модуляторы AD8345/6/9 и демодуляторы AD8347/8). Модуляторы могут быть использованы также в качестве повышающих бесфильтровых преобразователей частоты. Другая серия аналоговых микросхем - AD607 и ее вариант AD61009. Это - микросхемы подсистем приемного тракта, содержащих понижающий преобразователь частоты и квадратурный демодулятор.

Цифровые модуляторы с интерполятором и ЦАП.

Рисунок 6
На рис.6 показана часть структурной схемы приемопередатчика с цифровыми модулятором и демодулятором. На входе канала модуляции используется цифровой двухканальный интерполирующий ФНЧ (интерполятор), повышающий частоту дискретизации в модуляторе, а на выходе канала, после цифрового квадратурного модулятора, - ЦАП. На вход канала поступают составляющие I(tn) и Q(tn) модулирующего цифрового сигнала в параллельном формате. На интерполятор от синтезатора частот поступают, как минимум, две последовательности тактовых импульсов, определяющих частоту отсчетов, - входных с частотой fд1 и выходных с большей частотой fд2 = fд1Kинт, где Kинт - коэффициент интерполяции. Последовательность импульсов с частотой fд2 подается также и на ЦАП. Цифровое опорное колебание, определяющее частоту несущей на выходе модулятора, может быть синусоидальным, формируемым, например, методом прямого цифрового синтеза (DDS), или прямоугольным, формируемым системой ФАПЧ. Отсчеты составляющих синусоидального опорного колебания ( и на рис.6) характеризуются значениями описывающего их многоразрядного цифрового кода. Частота их следования равна fд2 (на рис.6 не показана). В модуляторе цифровые коды входного сигнала и опорного колебания перемножаются, и, в зависимости от знака суммирования, выбирается сумма или разность их произведений. Прямоугольное опорное колебание (последовательность чередующихся "0" и "1"), которое можно рассматривать как одноразрядное, дополнительно содержит нечетные гармоники. В результате в выходном сигнале модулятора возникают дополнительные спектральные составляющие, которые могут либо фильтроваться на выходе ЦАП, либо одна из гармоник может быть использована для образования более высокочастотной несущей. Синусоидальное DDS-колебание применяется в микросхемах AD9853/6/7 и AD9873/7/9, а прямоугольное - в AD9773/5/7 и AD9782/4/6 (усовершенствованные варианты AD9773/5/7, содержащие цепи компенсации для уменьшения искажений преобразуемого сигнала). Следует отметить особенность микросхем AD9773/5/7 - наличие двух модуляторов и двух ЦАП. Это позволяет выполнять преобразование Гильберта (Hilbert transform), т.е. формировать "комплексный" модулированный сигнал, состоящий из двух составляющих с фазовым сдвигом 90. Комплексный сигнал (с выхода ЦАП) используется, например, при работе AD9773/5/7 или двух AD9782/4/6 с аналоговым модулятором AD8345 (или AD8346/9), выполняющим функцию квадратурного повышающего преобразователя частоты. Фирма Analog Devices выпускает также серию четырехканальных процессоров AD6622/3 (Transmit Signal Processor - TSP). Процессоры выполняют функции: преобразования и расщепления (на квадратурные составляющие) модулирующего цифрового сигнала - для получения различных видов модуляции (PSK, MSK, GMSK, QPSK и др.); интерполяции; квадратурной модуляции; суммирования четырех потоков информации в один широкополосный поток. Они не имеют своего ЦАП и могут входить в состав чипсета SoftCell вместе с ЦАП AD9754.

Цифровые демодуляторы с АЦП и дециматором.

Канал демодуляции содержит АЦП, встроенный цифровой демодулятор и децимирующий фильтр (см.рис.6). Пример - микросхемы AD9870/4, представляющие собой субсистемы приемника и содержащие аналоговый преобразователь частоты и канал демодуляции. АЦП является узкополосным, так как его задача - произвести цифровое преобразование ПЧ-сигнала, поступающего с выхода преобразователя частоты. Узкополосность обеспечивается полосовой фильтрацией, ограничивающей спектр преобразуемого сигнала. При этом частота дискретизации может быть меньше верхней частоты спектра, но должна быть больше отфильтрованной полосы частот. Обычно используется сигма-дельта АЦП, содержащий, в общем случае, сигма-дельта модулятор и преобразующий децимирующий фильтр. В простейшем случае сигма-дельта модулятор формирует одноразрядную частотно-модулированную последовательность посылок "0" и "1", синхронизированную тактовыми импульсами с частотой fт. Частота модулятора, пропорциональная модулирующему сигналу, равна fмод = fтn1/(n0 + n1), где n0 и n1 - число посылок со значениями "0" и "1", соответственно, на интервале дискретизации. Интервал определяется частотой дискретизации fд в преобразующем фильтре и равен 1/fд. Частоту fт, которая значительно выше частоты дискретизации fд, называют также частотой передискретизации, а частоту fд - частотой децимации. Обычно fт = 2Nfд, где 2N - коэффициент передискретизации (он же - коэффициент децимации), а N - разрядность получаемого на выходе АЦП цифрового сигнала. Частоты fт и fд соответствуют fд2 и fд1 на рис.6 (в канале демодуляции). Преобразующий фильтр, входящий в состав сигма-дельта АЦП и называемый также децимирующим, выполняет преобразование частотно-модулированного сигнала сигма-дельта модулятора в многоразрядный цифровой сигнал, сопровождаемое цифровой фильтрацией и децимацией. Используется цифровой фильтр (обычно трансверсальный или эквивалентный ему рекурсивный), суммирующий посылки "1", существующие на интервале дискретизации. Результаты суммирования выражаются цифровым кодом на многоразрядном выходе фильтра. Рассмотренный сигма-дельта модулятор - одноразрядный, однако в AD9870/4 используется многоразрядный, работающий аналогично, но формирующий на выходе многоразрядную последовательность посылок. Его можно рассматривать как АЦП с передискретизацией. Допускается и применение других типов АЦП. Важно, чтобы дискретизация была с повышенной частотой (с fд2, см. рис.6), при которой в канале демодуляции уровень шумов, обусловленных цифровым преобразованием, снижается. К микросхемам с цифровыми демодуляторами, встраиваемыми в АЦП с дециматором, относятся также процессоры серии AD66xx - AD6620/24/24A/34/35/52 (Receive Signal Processor - RSP). В микросхемах этой серии демодуляторы именуются частотными трансляторами. Микросхемы AD66xx, кроме AD6652, требуют применения внешнего АЦП - AD6600/40/42 или AD9042, AD922x, AD923x, AD924x, AD943x. Микросхемы AD6600/40/42 (из той же серии AD66xx) - АЦП другого, конвейерного, типа.

Модемные протоколы, в которых используется КАМ. [3]

V.22bis

Это дуплексный протокол с частотным разделением каналов и модуляцией QAM. Несущая частота нижнего канала (передает вызывающий) - 1200 Гц, верхнего - 2400 Гц. Модуляционная скорость - 600 бод. Имеет режимы четырехпозиционной (кодируется дибит) и шестнадцатипозиционной (кодируется квадробит) квадратурной амплитудной модуляции. Соответственно, информационная скорость может быть 1200 или 2400 бит/с.Режим 1200 бит/с полностью совместим с V.22, несмотря на другой тип модуляции. Дело в том, что первые два бита в режиме 16-QAM (квадробит) определяют изменение фазового квадранта относительно предыдущего сигнального элемента и потому за амплитуду не отвечают, а последние два бита определяют положение сигнального элемента внутри квадранта с вариацией амплитуды. Таким образом, DPSK можно рассматривать как частный случай QAM, где два последних бита не меняют своих значений. В результате из шестнадцати позиций выбираются четыре в разных квадрантах, но с одинаковым положением внутри квадранта, в том числе и с одинаковой амплитудой.

V.32

Это дуплексный протокол с эхо-подавлением и квадратурной амплитудной модуляцией или модуляцией с решетчатым кодированием. Частота несущего сигнала - 1800 Гц, модуляционная скорость - 2400 бод. Таким образом, используется спектр шириной от 600 до 3000 Гц. Имеет режимы двухпозиционной (бит), четырехпозиционной (дибит) и шестнадцатипозиционной (квадробит) QAM. Соответственно, информационная скорость может быть 2400, 4800 и 9600 бит/с. Кроме того, для скорости 9600 бит/с имеет место альтернативная модуляция - 32-позиционная TCM.

V.32bis

Это дуплексный протокол с эхо-подавлением и модуляцией TCM. Используются те же, что в V.32, частота несущего сигнала - 1800 Гц, и модуляционная скорость - 2400 бод. Имеет режимы 16-TCM, 32-TCM, 64-TCM и 128-TCM. Соответственно, информационная скорость может быть 7200, 9600, 12000 и 14400 бит/с. Режим 32-TCM полностью совместим с соответствующим режимом V.32.

V.34

Дуплексный протокол, максимальная скорость 28800 бит/с. Может также поддерживать 24000 и 19200 бит/с.

V.34bis

Другое название -- V.34+. Максимальная скорость 33600 бит/с. Пониженные скорости: 31200, 24000 и 19200 бит/с.

В настоящее время КАМ наиболее широко используется в широкополосных модемах (ADSL, Ethernet). Используется непосредственно алгоритм КАМ (стандарт T1.413 ANSI), а также его разновидности: алгоритмы САР и G.dmt.

Рассмотрим характеристики алгоритма модуляции КАМ более подробно на примере стандарта T1.413 ANSI.

Характеристики алгоритма. [1]

В настоящее время наибольшее распространение получили несколько вариантов QAM. Алгоритм модуляции QAM-4 кодирует сигнал изменением фазы несущего колебания с шагом р/2. Этот алгоритм модуляции имеет название QPSK (Quadrature Phase Shift Keying - квадратурная фазовая манипуляция). Широкое распространение получили также алгоритмы QAM-16, 32, 64, 128 и 256. Алгоритм квадратурной амплитудной модуляции, по сути, является разновидностью алгоритма гармонической амплитудной модуляции и поэтому обладает следующими важными свойствами:

· ширина спектра QAM модулированного колебания не превышает ширину спектра модулирующего сигнала;
· положение спектра QAM модулированного колебания в частотной области определяется номиналом частоты несущего колебания.
Эти полезные свойства алгоритма обеспечивают возможность построения на его основе высокоскоростных ADSL-систем передачи данных по двухпроводной линии с частотным разделением принимаемого (downstream) и передаваемого (upstream) информационных потоков.
Конкретная реализация алгоритма QAM определяет значения следующих параметров:
· размерность модуляционного символа (log2 количества точек созвездия) N [бит]
· значение символьной скорости fSymbol [кбод/сек]
· центральная частота (central rate fc)
Значение информационной скорости V (скорости передачи данных для алгоритма QAM) определяется следующим соотношением:
V = N * fSymbol
Проект стандарта T1.413 ANSI предписывает использование следующих значений символьных скоростей в ADSL-системах передачи данных:


DOWNSTREAM fSymbol
UPSTREAM fSymbol
136 кбод
170 кбод
340 кбод
680 кбод
952 кбод
1088 кбод
85 кбод
136 кбод

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.