Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Ограниченный динамический диапазон источников сообщений и конечная разрешающая способность получателей информации людей и исполнительных механизмов. Равномерное и неравномерное квантование сообщений. Искажения при квантовании. Потеря информации.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 10.02.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


11
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
кафедра РЭС
реферат на тему:
"Квантование сообщений. Ошибки квантования. Энтропия источника сообщений"
МИНСК, 2009

Квантование сообщений. Ошибки квантования

Итак, показано, что передачу практически любых сообщений л(t) ({л(x,y) }) можно свести к передаче их отсчетов, или чисел лi = л(i t), следующих друг за другом с интервалом дискретности t 1/2Fm (Дx ? 1/2fx, Дy ? 1/2fy). Тем самым непрерывное (бесконечное) множество возможных значений сообщения л(t) заменяется конечным числом его дискретных значений {л(i t) }. Однако сами эти числа имеют непрерывную шкалу уровней (значений), то есть принадлежат опять же континуальному множеству. Для абсолютно точного представления таких чисел, к примеру, в десятичной (или двоичной) форме, необходимо теоретически бесконечное число разрядов. Вместе с тем на практике нет необходимости в абсолютно точном представлении значений лi, как и любых чисел вообще.

Во-первых, сами источники сообщений обладают ограниченным динамическим диапазоном и вырабатывают исходные сообщения с определенным уровнем искажений и ошибок. Этот уровень может быть большим или меньшим, но абсолютной точности воспроизведения достичь невозможно.

Во-вторых, передача сообщений по каналам связи всегда производится в присутствии различного рода помех. Поэтому принятое (воспроизведенное) сообщение (оценка сообщения *(t) или *) всегда в определенной степени отличается от переданного, то есть на практике невозможна абсолютно точная передача сообщений при наличии помех в канале связи.

Наконец, сообщения передаются для их восприятия и использования получателем. Получатели же информации - органы чувств человека, исполнительные механизмы и т.д. - также обладают конечной разрешающей способностью, то есть не замечают незначительной разницы между абсолютно точным и приближенным значениями воспроизводимого сообщения. Порог чувствительности к искажениям также может быть различным, но он всегда есть.

С учетом этих замечаний процедуру дискретизации сообщений можно продолжить, а именно подвергнуть отсчеты лi квантованию.

Процесс квантования состоит в замене непрерывного множества значений отсчетов i (min, max) дискретным множеством { (1),...,(m) } из алфавита A{ лi }. Тем самым точные значения чисел i заменяются их приблизительными (округленными до ближайшего разрешенного уровня) значениями. Интервал между соседними разрешенными уровнями i, или уровнями квантования, = (i+1) - (i) называется шагом квантования.

Различают равномерное и неравномерное квантование. В большинстве случаев применяется и далее подробно рассматривается равномерное квантование (рис.1), при котором шаг квантования постоянный: = лi - лi-1 = = const; однако иногда определенное преимущество дает неравномерное квантование, при котором шаг квантования i разный для различных лi (рис.2).

Рис. 1. Рис. 2.

Квантование приводит к искажению сообщений. Если квантованное сообщение, полученное в результате квантования отсчета i = (iДt), обозначить как лiq, то

(1)

где i - разность между квантованным сообщением (ближайшим разрешенным уровнем) лiq и истинным значением элементарного сообщения i, называемая ошибкой квантования, или шумом квантования. Шум квантования оказывает на процесс передачи информации по существу такое же влияние, как и помехи в канале связи. Помехи, так же как и квантование, приводят к тому, что оценки л*i, получаемые на приемной стороне системы связи, отличаются на некоторую величину от истинного значения i.

Поскольку квантование сообщений приводит к появлению ошибок и потере некоторой части информации, можно определить цену таких потерь d(, лq) и среднюю величину ошибки, обусловленной квантованием:

(2)

Чаще всего в качестве функции потерь (цены потерь) используется квадратичная функция вида

(3)

В этом случае мерой ошибок квантования служит дисперсия этих ошибок. Для равномерного N-уровневого квантования с шагом дисперсия ошибок квантования определяется следующим образом:

. (4)

Абсолютное значение ошибки квантования не превосходит половины шага квантования /2, и тогда при достаточно большом числе уровней квантования N и малой величине плотность распределения вероятностей ошибок квантования f(i) можно считать равномерной на интервале +/2 … - /2:

(5)

В результате величина ошибки квантования D(q) = уq2 определится соотношением

(6)

и соответствующим выбором шага квантования может быть сделана сколь угодно малой или сведена к любой наперед заданной величине.

Относительно требуемой точности передачи отсчетов сообщений можно высказать те же соображения, что и для ошибок временной дискретизации: шумы квантования или искажения, обусловленные квантованием, не имеют существенного значения, если эти искажения меньше ошибок, обусловленных помехами и допустимых техническими условиями.

Так, например, при передаче речи и музыки искажения практически не заметны, если все отсчеты случайным образом изменить на 0,1…1%, при передаче изображений - на 1% и т.д. Даже профессиональный эксперт не может заметить искажений в музыкальном произведении, если квантование производится с точностью лучше 0,001% (число уровней квантования N > 100000, точность представления отсчетов - 16…17 двоичных разрядов). Число уровней квантования сообщений в телеметрических системах зависит от требуемой точности воспроизведения информации, а также от точности датчиков, осуществляющих сбор этой информации. При этом превышение при квантовании достижимой датчиками или требуемой точности нецелесообразно из-за увеличения сложности аппаратуры и затрат на передачу. Более того, при передаче по каналу связи с помехами могут возникать ситуации, когда качество воспроизведения оценки сообщения л*i при более грубом его квантовании на передающей стороне оказывается значительно лучшим, чем для точного квантования. На этом достаточно неочевидном, но вытекающем из общей теории передачи информации явлении в дальнейшем более подробно остановимся.

Таким образом, показано, что передачу практически любых сообщений л(t) ({л(x,y) }) с любой наперед заданной точностью можно свести к передаче целых чисел лiq = лq(i t), следующих друг за другом с интервалом дискретности t 1/2Fm (Дx ? 1/2fx max, Дy ? 1/2fy max). Тем самым непрерывное (бесконечное) множество возможных значений сообщения л(t) ({л(x,y) }) заменяется конечным множеством целых чисел из алфавита A{ лi q }, (i =1,2…N). Иными словами, теперь можно работать с сигналами, как с числами, а это позволяет применять для их обработки и анализа цифровые алгоритмы любой степени сложности, практически нереализуемые в аналоговой форме, использовать в системах передачи информации цифровые методы и современные цифровые интегральные технологии и т.д.

Итак, мы выяснили, что в радиотехнических системах носителями или переносчиками информации являются электрические сигналы, формируемые источниками этой информации. Даже в тех случаях, когда первичная информация носит неэлектрическую природу (речь, музыка, из и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.