На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Физические явления в переключательных p-i-n-диодах - основных элементов высокоскоростных СВЧ-модуляторов. Технология, структура и требования к параметрам полупроводникового материала. Методы создания p-i-n-структур, конструкции и способы сборки.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 24.03.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


16
ВВЕДЕНИЕ
В последнее время p-i-n- диод стал основным полупроводниковым элементом высокоскоростных СВЧ-модуляторов. Это связано с рядом преимуществ p-i-n- диодов по сравнению с применяемыми ранее варакторными диодами.
При прямом смещении p-i-n- структуру обычно представляет собой активное сопротивление. При обратном смещения ее можно представить в виде последовательно соединенных сопротивления и емкости. Резкое изменение импеданса полупроводниковой структуры p-i-n- диода и, следовательно, импеданса модулятора происходит вблизи точки нулевого смещения. При прямом смещении, начиная с некоторой величины Iпр, импеданс слабо зависит от тока. В обратносмещенном состоянии емкость базы диода на единицу площади относительно мала и не зависит от напряжения смещения. Поэтому характеристики модулятора в обоих состояниях смещения на диоде выходят на насыщение и почти не зависят от параметров управляющего сигнала. Вследствие этого колебания мощности падающего СВЧ-сигнала и температуры не приводят к значительным изменениям характеристик модулятора. Для варакторных диодов характерно плавное изменение импеданса, и характеристики СВЧ-модуляторов с такими диодами в существенной степени зависят от напряжения смещения. Поэтому при использовании варакторных диодов должны предъявляться повышенные требования к стабильности параметров управляющего сигнала. Колебания мощности СВЧ-сигнала и температуры влияют на характеристики таких модуляторов в большей степени, чем модуляторов на p-i-n- диодах. Кроме того, у варакторных диодов емкость на единицу площади полупроводниковой структуры и последовательное сопротивление при малых смещениях относительно велики, что создает трудности при конструировании модуляторов с малыми потерями СВЧ-мощности.
По уровню коммутируемой мощности p-i-n- диоды превосходят варакторные диоды. Так, в линиях связи диапазона частот 10-20 ГГц типичное значение мощности СВЧ-сигнала на выходе модуляторов на диодах Шотки не превышает 100 мВт. Замена диода Шотки p-i-n- диодом позволяет поднимать уровень выходной мощности фазового модулятора при сохранении прежней скорости передачи информации.
Полупроводниковые p-i-n- диоды используются в аппаратуре, вырабатывающей электромагнитные колебания диапазона сверхвысоких частот (СВЧ), излучающей их в окружающее пространство в виде радиоволн и принимающей и преобразующей эти волны с последующим использованием преобразованного сигнала для управления исполнительными механизмами, а также для индикации и измерения радиосигналов.
Электромагнитные колебания диапазона СВЧ обладают рядом физических особенностей, благодаря которым они нашли применение в самых разнообразных направлениях науки и техники. Наиболее важно то, что эти волны по характеру распространения приближаются к световым волнам (обладают квазиоптическими свойствами) и способны проникать сквозь всю атмосферу, включая верхние ионизированные слои.
Диоды просты конструктивно, имеют малые габаритные размеры и массу, потребляют небольшую энергию, обладают высоким быстродействием и сравнительно недороги.
Повышение качества p-i-n- диода может быть связано с достижением более высоких параметров таких как, пробивное напряжение Vпроб при обратном смещении, прямой ток через диод Iпр, прямое и обратное сопротивление потерь пр и обр. Такая попытка проведена в данной дипломной работе.
1 Физика и технология p-i-n- диодов для
высокочастотных применений
1.1 Физические явления в переключательных p-i-n- диодах

1.1.1 Вольт-амперная характеристика
При моделировании процессов протекания тока в p-i-n- диодах, как правило, используют следующие допущения: ступенчатость распределения примесей на границах p-i и p-n-переходов; независимость подвижности и времени жизни носителей заряда от их концентрации; одномерность геометрии диодов.
P-i-n- диоды, предназначающиеся для высокоскоростной модуляции СВЧ-мощности, обычно имеют тонкую базy: w<Li, где Li - диффузионная длина носителей заряда в i- области. Плотность, прямого тока колеблется от десятков до тысяч А/см2. В этом диапазоне плотностей тока коэффициенты инжекции переходов существенно отличаются от единицы, т.е. происходит инжекция основных носителей заряда из базы в низкоомные области p-i-n-структур. Это приводит к тому, что неравновесные носители заряда накапливаются не только в i- области, но и в контактных областях. В большинстве случаев заряд контактных областей значительно меньше заряда, накапливаемого в базе.. Однако рекомбинационные процессы в этих областях могут определять вид ВАХ p-i-n-диода.
Неидеальность переходов характеризуется добротностями Вp и Вn, которые являются сложными функциями параметров р - и n - контактных областей и напряжения на переходах. С увеличением напряжения добротность переходов падает. К снижению добротности приводит также нерезкость реальных p-i- и i-n - переходов и наличие в них значительных концентраций рекомбинационных центров.
В зависимости от соотношения между рекомбинационными токами в базе р-i-n - диода и в контактных областях на ВАХ р-i-n- диода можно выделить три типичных участка.
1) При малых плотностях тока коэффициенты инжекции р-i- и i-n - переходов близки к единице, преобладает рекомбинация в базовой области и ВАХ диода описывается зависимостью по Холлу[7,13,15,16,]
, (1)
где Iпр - прямой ток через диод;
Vпр - падение напряжения на диоде при прямом смещении;
q - заряд электрона;
k - постоянная Больцмана;
Т - температура.
2) По мере уменьшения добротности переходов с возрастанием прямого смещения на диоде становится существенной инжекция носителей заряда в контактные области. Когда рекомбинационный ток в этих областях становится равным рекомбинационному току в базе, ВАХ р-i-n- диода можно представить в виде[15]
(2)
Крутизна ВАХ на этом участке выше, чем на холловском.
3) При дальнейшем росте плотности тока, когда рекомбинация в низкоомных р- и n- областях начинает преобладать над рекомбинацией в базовой области, крутизна ВАХ p-i-n- диода уменьшается, и связь между током и напряжением на диоде принимает вид [13,15]
(3)
где V0 - сумма падений напряжения на контактах и разности потенциалов Дембера.
Следует отметить, что второй участок ВАХ имеет большую протяженность у диодов с меньшим значением отношения w/Li, у р-i-n- диодов с w/Li ~1 такого участка ВАХ практически не наблюдается.
На рис.1 показана зависимость тока от напряжения быстродействующего переключательного p-i-n- диода, предназначенного для высокоскоростной модуляции СВЧ-мощности в цифровых системах связи [9]. Толщина базы диода около 2 мкм при диаметре p-i-n- структуры 30-35 мкм. На ВАХ не наблюдается переход к квадратичному участку даже при плотности тока (4-6)*103 А/см2, что может свидетельствовать о высокой добротности переходов и сравнительно большом времени жизни носителей заряда в i-области.

Общий накопленный заряд QS есть сумма зарядов в i -области

и в p- и n- областях. Для симметричной модели диода

, (4)

где Qi - накопленный заряд в базе диода;

QC - накопленный заряд в контактной области.

Уравнение непрерывности для заряда, являющееся основой метода, в этом случае имеет вид

, (5)

где i - время жизни носителей заряда в i- области при высоком уровне инжекции;

Рис. 1. ВАХ быстродействующего переключательного p-I-n- диода.

Рис. 2. Стационарное распределение носителей и накопленных зарядов в базовой и контактных областях для симметричной модели p-i-n- диода.

С - время жизни носителей заряда в контактных областях.

Распределение носителей заряда в базовой и контактных областях в стационарном состоянии для симметричного случая показано на рис. 2. Со-

гласно распределению Больцмана концентрация носителей в I - области на границе с р - областью связана с их концентрацией в p- области соотношением

, (6)

где р0 - концентрация равновесных дырок в р- области;

V0p-I - контактная разность потенциалов на р -I - переходе;

Vp-I -внешнее напряжение на p-i- переходе;

pi, ni - концентрация электронов и дырок в базе.

Аналогичное соотношение выполняется и на I-n- переходе. Выражение (6) справедливо до тех пор, пока в р- области выполняется условие низкого уровня инжекции. С ростом инжекции в (6) p0 необходимо заменить на p0+nC(p), где nC(р) - концентрация электронов, инжектированных в р-область, и зависимость (6) усложняется.

Для p-I-n- диодов с w<Li при J< 103 А/см2 падением напряжения на базе в стационарном состоянии можно пренебречь [4,7,14]. В этом случае для симметричной модели падение напряжения на каждом из переходов равно

, где Vp-n - общая контактная разность потенциалов диода.

Учитывая (6), а также полагая одинаковую степень легирования р- и n- областей (p0=n0=NC), распределение носителей заряда в I -области может быть записано в виде (см. рис. 2)

, (7)

где NC - концентрация доноров(акцепторов) в контактных областях;

Li - диффузионная длина носителей заряда в I- области;

В контактных областях быстродействующих переключательных

p-i-n- диодов обычно выполняется условие низкого уровня инжекции. Поэтому распределение концентрации неосновных носителей описывается экспоненциальным законом

, (8)

где w - толщина базы диода с учетом слоев обеднения. При прямом смещении этой поправкой можно пренебречь даже для диодов с очень тонкой базой. Замена w* на w в (8) приводит к ошибке не более 10 % [5].

Выражение для стационарных зарядов Qi0 и QC0 получается интегрированием (7) и (8). Используя уравнение непрерывности (5) в стационарном случае, можно получить соотношения между этими зарядами и напряжением на диоде [9,10]

QC0 = A*q*NC*LC*V2 , (9)

, (10)

, (11)

где А - площадь диода;

w - толщина базовой области p-I-n- диода.

1.1.2 Переходные процессы при подаче прямого смещения

В случае высокого уровня инжекции прямой переходный процесс в p-i-n- диоде можно условно разделить m три фазы. Первая фаза - установление квазинейтральности в базе диода. В течение этой фазы ток в базе определяется в основном дрейфом носителей заряда. Вторая фаза - фаза, в которой преобладает амбиполярная диффузия носителей в квазинейтральной базе. Третья фаза - стационарное распределение носителей. Уравнение непрерывности для заряда в базовой области диода с учетом утечек через переходы для симметричной модели диода (b=1, Bp=Bn=BД ) может быть записано в виде [16]

, (12)

где QN - заряд ионизированных примесей в базе;

BД - добротность переходов.

Для p-i-n- диодов с контактными областями бесконечной протяженности влиянием металлических контактов на добротность переходов можно пренебречь. В этом случае эффективное время жизни носителей заряда э определяется выражением [12]

, (13)

где Dс - коэффициент диффузии носителей в контактной области. При использовании параметра эф уравнение (5) упрощается:

(14)

Если с момента переключения в состояние с прямым смещением через диод протекает постоянный ток Iпр, решение уравнения (14) имеет вид

(15)

В стационарном состоянии QS = Inp*эф. Эффективное время жизни может быть определено из измерений величины накопленного заряда при данной величине прямого тока.

Градиенты концентраций диффундирующих носителей заряда для симметричной модели диода определяются из условия
(16)
Два диффузионных потока квазинейтральной электронно-дырочной плазмы, движущиеся навстречу друг другу от краев базы, встречаются в центре базы в момент
tC = w2/8*D, (17)
где D = 2*b*Dp/b+1 - амбиполярный коэффициент диффузии носителей заряда.
Если tC << эф, то в период времени до встречи диффузионных фронтов рекомбинацией носителей заряда можно пренебречь. В этом случае в промежутке времени t`C t tC (tC - время установления квазинейтральности заряда в базе) для концентрации дырок на границах базы можно записать
(18)
Для t >> tC распределение носителей заряда в базе можно считать однородным и
QS = A*q*w*pi(0) (19)
Если пренебречь падением напряжения на i -области, то предполагая справедливость распределения Больцмана
Pi(0) = pi0*exp(q*Vp-i/k*T),
где pi0 - равновесная концентрация дырок в i-области, из выражений (15), (18), (19) легко определить падение напряжения на диоде при переходном процессе.
1.1.3 Переходные процессы при переключении от прямого смещения к обратному
Процесс рассасывания накопленных носителей заряда при переключении диода в состояние с обратным смещением можно также характеризовать тремя основными фазами. Первая фаза - фаза квази-нейтралъности, в течение которой происходит обеднение носителями областей базы, прилегающих к границам p-i - и i-p- переходов. Вторая фаза - развитие областей объемного заряда, возникающих у границ базы и разрастающихся к ее центру. В этих областях ток ограничен объемным зарядом. Третья фаза - фаза переноса, в которой после смыкания областей объемного заряда из базы вытягиваются неравновесные электроны и дырки.
Процесс восстановления обратного сопротивления p-i-n- диода с учетом зарядов контактных областей может быть разделен на четыре фазы: фазу восстановления зарядов контактных областей, фазу квазинейтральности процесса восстановления заряда базы, фазу развития областей объемного заряда и фазу переноса.
Фаза восстановления зарядов контактных областей. В этот период ток поддерживается зарядом 2*QC . Первыми от неосновных носителей заряда освобождаются слои, прилегающие к границам p-i-и i-n- переходов. Этот процесс подобен процессу в диодах с резким восстановлением [9]. Так как граничные концентрации носителей заряда в базе диода и контактных областях связаны между собой распределением Больцмана, то любое уменьшение концентрации неосновных носителей заряда в контактных областях сопровождается соответствующим уменьшением концентрации электронов и дырок в базе диода. Следовательно, в этот период времени наряду с зарядом контактных областей восстанавливается часть заряда i-области. Одн и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.