На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Измерение оптических характеристик телескопических систем. Измерение увеличения телескопических систем. Измерение увеличения по линейному увеличению. Оценка качества изображения телескопических и микроскопических систем. Определение визуальной разрешающей

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 11.12.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
«Контроль оптических характеристик приборов»
МИНСК, 2008
Измерение оптических характеристик телескопических систем

Телескопическая система характеризуется следующими основными параметрами: увеличением, полем зрения, размерами и расположением зрачка выхода, пропусканием и светорассеянием.
Измерение увеличения телескопических систем
В телескопической системе видимое, линейное и угловое увеличения являются постоянными величинами и связаны друг с другом следующей зависимостью:
(1)
Где Г - видимое увеличение;
- угловое увеличение;
- линейное увеличение;
- диаметр зрачка входа;
- диаметр зрачка выхода;
2 - угол поля зрения в пространстве предметов;
2 - угол поля зрения в пространстве изображения.
Рис. 1. Схема измерения видимого увеличения телескопической системы по линейному увеличению.
Существует несколько методов измерения увеличения, осно-ванных на использовании формулы (1).
Измерение увеличения по линейному увеличению. Схема из-мерения представлена на рис. 1. Стеклянную масштабную шкалу 3 помещают вблизи объектива 4 испытуемой телескопиче-ской системы. Изображение этой шкалы получается недалеко от зрачка выхода системы. Для определения увеличения измеряют величину этого изображения с помощью динаметра 5, предста-вляющего собой лупу, в фокальной плоскости которой устано-влена сетка.
При измерении к наружному торцу окуляра прижимают тубус динаметра и, передвигая в нем трубку с лупой и сеткой, совме-щают сетку динаметра с изображением шкалы 3. Измерив величину изображения, находят видимое увеличение телескопической си-стемы по формуле
где -- число целых делений стеклянной масштабной шкалы;
- цена одного деления масштабной шкалы в мм;
N2- число делений шкалы динаметра, укладывающихся в делениях стеклянной шкалы;
- цена одного деления шкалы динаметра.
Стеклянная масштабная шкала может быть заменена круглой или прямоугольной диафрагмами, размеры которых заранее известны. Диафрагма или шкала должны быть освещены днев-ным рассеянным светом или электролампой 1 через молочное или матовое стекло 2,
При измерении линейного увеличения положительных телескопических систем используются динаметры Рамсдена или Чапского. При измерении увеличения отрицательных систем при-меняется динаметр Чапского.
Измерение видимого увеличения по угловому увеличению. Для определения видимого или углового увеличения можно использовать установку, состоящую из коллиматора 1 и зрительной: трубы 2 с сеткой (рис.2). Измерения на установке выполняют в следующей последовательности. Предварительно зрительную трубу 2 визируют на коллиматор 1 и замечают, сколько делений по шкале трубы занимает изображение одного иль нескольких: делений шкалы коллиматора. Затем между коллиматором зрительной трубой помещают испытуемую систему 3 и вновь, замечают, сколько делений пo шкале зрительной трубы зани-мает изображение того же деления (или нескольких делений) шкалы коллиматора.
Рис.2. Схема измерения видимого увеличения телескопической системы по угловому увеличению
Отношение / определяет угловое или видимое увеличе-ние телескопической системы.
Измерение поля зрения телескопических систем

Измерение поля зрения телескопической системы можно осу-ществить несколькими методами.
Измерение поля зрения с помощью широкоугольного колли-матора. Схема измерений показана на рис.3. фокальной плоскости объектива коллиматора 1 расположена шкалах двумя взаимно перпендикулярными рядами делений, оцифровка деле-ний которой, выполнена в угловой мере.
За объективом широкоугольного коллиматора устанавливают контролируемую систему 2 так, чтобы центр се поля зрения сов-пал с центром перекрестия шкалы коллиматора. Наблюдая в кон-тролируемую систему, замечают, какие деления шкалы колли-матора еще видны на краях поля зрения контролируемой системы.
Рис.3. Измерение поля зрения телескопической системы с помощью широкоугольного коллиматора.
Расстояние между этими делениями, выраженное в угловой мере, и определяет поле зрения контролируемой системы.
При проверке отрицательной телескопической системы (труба Галилея) необходимо учесть следующее.
1. Поле зрения такой системы резко не ограничено и осве-щенность изображения на краю постепенно падает, поэтому определение края поля, а следовательно, и величины поля зре-ния такой системы несколько условно. В этом случае рекомен-дуется изменять специальные устройства, позволяющие опре-делять зависимость падения освещенности от величины угла поля зрения.
Рис.4. Измерение поля зрения телескопической системы с помощью рейки.
2. В отрицательных телескопических системах полевой диафрагмой служит в большинстве случаев оправа объектива, по-этому диаметр объектива коллиматора должен быть больше диа-метра контролируемой системы, в противном случае объектив коллиматора ограничит поле зрения контролируемой системы.
Измерение поля зрения по рейке. Схема измерений показана на рис.9. Перед контролируемой системой 2 устанавливают рейку 1 с делениями на таком расстоянии, при котором деления рейки будут видны в системе
2 резко и без заметного на глаз параллакса.
Саму систему располагают так, чтобы ее визирная ось была примерно горизонтальна. Зная расстояние между делениями рейки, видимыми на краях поля зрения контролируемой системы, и измерив расстояние от рейки до системы 2, определяют угол поля
Где А - расстояние между делениями рейки, видимыми на краях
поля зрения;
L - расстояние между рейкой и контролируемой системой 2.
Измерение диаметра зрачка выхода телескопической системы и его удаления

Измерения выполняют с помощью динаметров Рамсдена или Чапского. На рис. 5, а показано устройство динаметра Рамсдена. Динаметр представляет собой трубку 3, вставленную в тубус 1, В трубке 3 укреплена стеклянная шкала 2, внутри нее есть резьба, по которой передвигается лупа 4 в оправе для фокусировки ее на шкалу. На цилиндрическую поверхность трубки 3 нанесены деления с интервалом 1 мм. По э им делениям отсчитывают расстояние от опорного торца тубуса 1 до стеклян-ной шкалы динаметра.
Для измерения диаметра зрачка выхода телескопической системы и удаления его от наружного края окуляра предвари-тельно фокусируют лупу динаметра на резкое изображение его шкалы. Затем, осветив объектив системы рассеянным светом и прижимая тубус динаметра к наружному краю оправы окуляра телескопической системы, передвигают трубку 3 внутри тубуса 1 до тех пор, пока не будет резко виден в лупу зрачок выхода си-стемы.
Зрачок выхода обычно имеет вид светлого полного круга или круга, несколько срезанного с одной или двух сторон (если кон-тролируемая система имеет призмы).
Далее по шкале динаметра измеряют диаметр зрачка выхода, а по шкале, нанесенной на трубке, отсчитывают расстояние от торца окуляра контролируемой системы до ее зрачка выхода.
В динаметре Чапского (рис. 5, б) в отличие от динаметра Рамсдена впереди шкалы помещен объектив. Этот объектив распо-ложен так, что стеклянная шкала динаметра оказывается на двой-ном фокусном расстоянии от объектива. Следовательно, в пло-скости стеклянной шкалы динаметра будут резко видны предметы, находящиеся на двойном фокусном расстоянии от объектива динаметра.
Рис. 5. Схема динаметров Рамсдена и Чапского.
Главное преимущество динаметра Чапского -- это возмож-ность измерений размеров зрачка выхода, находящегося внутри телескопической системы. Это имеет место, например, в трубе Галилея, если ее рассматривать независимо от глаза, где зрачком выхода-системы служит изображение ее объектива через окуляр, расположенное между окуляром и объективом телескопической системы.
В заднем фокусе лупы в обоих динаметрах располагают не-большую диафрагму, которая создает телецентрический ход цучей в пространстве изображений (рис. 5, в). Поэтому незначительные ошибки в фокусировке динаметра на резкое изображение зрачка выхода контролируемой системы не сказываются на точности измерений.
Измерение пропускания

Измерение полезного пропускания телескопических приборов выполняют на установке, подобной универсальному фотометру типа ИФТ-15А. Схема установки представлена на рис. 6.
Во входное отверстие исследуемого телескопического при-бора 3 направляется параллельно его оптической оси пучок лу-чей, выходящих из коллиматорного объектива фотометра. В фо-кальной плоскости объектива 2 коллиматора находится точечный источник света, как правило, круглое отверстие в непрозрачной диафрагме 1, освещенное лампой накаливания. За исследуемым прибором с помощью дополнительной короткофокусной линзы 4 или с помощью продольного перемещения окуляра прибора полу-чают изображение точечного источника света.
Рис. 6. Схема установки для измерения коэффициента светопропускания телескопических систем.
Ограничительную диафрагму 5 устанавливают так, чтобы ее отверстие было концентрично изображению источника света. Диаметр отверстия выби-рают так, чтобы через него свободно проходил световой поток, образующий изображение точечного источника света (в том числе лучи, образующие в изображении точечного источника дифракционные и аберрационные кольца, ореолы, каемки), а световой поток, нерегулярно прошедший через прибор и образующий фон вокруг изображения, должен быть задержан. Световой поток, прошедший через отверстие ограничительной диафрагмы, воспринимается светочувствительным приемником 6, фототок которого регистрируется гальванометром. Затем фотоприемник устанавли-вают перед входным отверстием контролируемого прибора и реги-стрируют показания гальванометра, пропорциональные свето-вому потоку, вошедшему в контролируемый прибор. Коэффици-ентом полезного пропускания телескопического прибора назы-вают отношение выходящего из прибора светового потока , создающего изображение малого светящегося предмета, к свето-вому потоку , входящему в прибор, от этого предмета:
.
Значение коэффициента полезного пропускания , получаемое как отношение показаний гальванометра и , и вычисляют с учетом поправок и , учитывающих нелинейнос и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.