На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Лекции Методика построения программной модели. Обобщенная структурная схема ВС. Моделирование работы абонента и работы буферной памяти. Разработка программы сбора статистики и управляющей программы имитационной модели. Методика реализации событийной модели.

Информация:

Тип работы: Лекции. Предмет: Схемотехника. Добавлен: 24.06.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


44
Методика построения программной модели
Для разработки программной модели исходная система должна быть представлена как стохастическая СМО. Это объясняется следующим: информация от внешней среды поступает в случайные моменты времени, длительность обработки различных типов информации в общем случае также является различной. Таким образом, внешняя среда может быть отображена как генератор сообщений, а комплекс ВС - обслуживающими устройствами.
Обобщенная структурная схема ВС.


ИИ - источники информации - выдают на вход буферной памяти независимые друг от друга сообщения. Закон появления сообщений - произвольный.
В БП (буферной памяти) сообщения записываются «в навал» и выбираются по одному в обслуживающий аппарат по принципу FIFO/LIFO. Длительность обработки одного сообщения в ОА (обслуживающий аппарат) в общем случае может быть случайной, но закон обработки всегда должен быть задан. Т.к. быстродействие ОА ограничено, то на входе системы в БП возможно сложение данных, ожидающих обработку.
ПБССт - программный блок сбора статистики.
Блок синхронизации необходим, чтобы система заработала.
Моделирование потока сообщений.
Поток сообщений обычно моделируется моментами появления очередного сообщения в потоке. Текущий момент времени появления очередного сообщения:
где Ti - интервал времени между появлением i-го и (i-1)-го сообщения.
Процедура.
обращение к процедуре выражения случайного числа
Rnd

Вид распределения
Выражение
равномерное на [a,b]

нормальное

экспоненциальное

Эрланга


Моделирование работы Обслуживающего Аппарата.
Программа - имитатор работы ОА представляет собой комплекс, вырабатывающий случайные отрезки времени, соответствующие длительностям обслуживания требований. Например, если требования от источника обрабатываются в ОА по нормальному закону с параметрами Mx и x, то длительность обработки i-ого требования:

Схема алгоритма имитатора.
R
i - случайное число с равномерным законом распределения
ТОБР - время обработки очередного сообщения
T - время освобождения ОА
XM - Мат ожидание для заданного закона обратки
DX - СКО для заданного закона обратоки

Моделирование работы абонента
Абонента можно рассматривать как ОА, поток информации на который поступает от процессора. Для моделирования работы абонентов необходимо вырабатывать длительности обслуживания требований. Кроме того, абонент сам может быть источником заявок, претендуя на те или иные ресурсы вычислительной системы. Эти заявки могут имитироваться с помощью генератора сообщений по наперед заданному закону. Таким образом, абонент либо имитируется как ОА, либо как генератор.
Моделирование работы буферной памяти
Блок буферной памяти должен производить запись и считывания числа, выдавать сигналы переполнения и отсутствия данных. В любой момент времени располагать сведениями о количестве требований в блоке. Сама запоминающая среда имитируется некоторым одномерным массивом, размер которого определяет размер БП. Каждый элемент этого массива может быть либо свободен, либо занят.

P
массив сообщений
LM
объем буферной памяти
WYB
признак обращения к буф. памяти
= 1 - режим выборки сообщений
= 0 - режим записи
NPOS
номер последнего сообщения, поступившего в память
NP
число сообщений в памяти
NPER
номер первого сообщения в памяти
POLN
признак переполнения памяти
= 1 - нет свободных ячеек
PUST
признак отсутствия сообщений
= 1 - в памяти нет сообщений
NPOS
= NPOS + 1, если NPOS < LM
=
NPOS - LM + 1, иначе
NPER
= NPER - 1, если NPER < 1
= NPER - LM + 1, иначе
X
ячейка для сообщения


Разработка программы сбора статистики
Задача блока статистики заключается в накоплении численных значений, необходимых для вычисления статистических оценок заданных параметров моделируемой системы.
При моделировании работы простейшей СМО обычно интерес представляет среднее время ожидания в очереди. Для каждого сообщения время ожидания в очереди равно разности между моментами времени, когда оно было выбрано на обработку ОА, и моментом времени, когда оно пришло в систему от источника информации.
Суммируя значения количества сообщений в БП через небольшие промежутки времени и разделив на число суммирований, получим среднее значение длины очереди в памяти.
Коэффициент загрузки ОА
определяется как отношение времени работы ОА к общему времени моделирования.

Разработка управляющей программы имитационной модели
Если программа - имитатор работы источника обслуживающего аппарата или памяти моделирует работу отдельных устройств, то управляющая программа имитирует алгоритм взаимодействия элементов системы. Управляющая программа реализуется в основном по двум принципам:
1. принцип t
2. событийный принцип

Принцип t.

Принцип заключается в последовательном анализе состояний всех блоков в момент t+t по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действия случайных факторов, задаваемых распределением вероятностей. В результате этого анализа принимается решение о том, какие общесистемные события должны имитироваться в программной модели на данный конкретный момент времени.

Основной недостаток в том, что происходят значительные затраты машинного времени на реализацию исследования системы. При недостаточно малом t появляется опасность пропуска отдельных событий в системе, что приводит к получению неправильных результатов.

Событийный принцип

Характерное свойство моделируемых систем - состояние отдельных устройств изменяется в дискретные моменты времени, которые совпадают с моментами поступления сообщений в систему, моментами окончания решения задач, моментами возникающих аварийных сигналов и т.д. Поэтому, моделирование и продвижение текущего времени в системе удобно проводить использую событийный принцип, при котором состояние всех блоков системы анализируется лишь в момент наступления какого-либо события. Момент наступления следующего события определяется минимальным значением из списка будущих событий, представляющих собой совокупность моментов ближайшего изменения состояний каждого из блоков системы.
t11, t12 - моменты появления сообщений на выходе генератора (источника информации)
b1 - интервал времени обслуживания первого сообщения
t3 n - момент сбора статистики
t41 - момент окончания моделирования
Методика реализации событийной модели

1. Для всех активных блоков (блоков, порождающих события) заводя свой элемент в одномерном массиве - списке будущих событий.
2. В качестве подготовительной операции в список будущих событий SBS заносят время ближайшего события от любого активного блока. Активизируя программу-имитатор, ИИ вырабатывает псевдослучайную величину a0, определяющую момент появления первого сообщения t11. Эту величину заносят в список будущих событий.
Активизируя программу-имитатор, ОА вырабатывает псевдослучайную величину b0, определяющую момент времени t21, которую также заносят в SBS.
Момент времени t31 (1ый сбор статистики) определяется равным стандартному шагу сбора tСТАТ, и заносится в SBS
В SBS заносится t41 - время окончания моделирования.
Подготовительная часть на этом закончена и начинается протяжка модельного времени.
3. В SBS определяется минимально числовое значение и его номер.
4. Реализуется событие, порождаемое блоком с соответствующим номером, т.е. модельное время = t11. Далее реализуется событие с номером 1, связанное с появлением нового сообщения в ИИ. Реализация этого события заключается в том, что само сообщение записывается в память, а с помощью имитатора ИИ, вырабатывается момент появления следующего события t12. Это время помещается в соответствующую ячейку SBS место t11.
Затем вновь организуется поиск минимального элемента в SBS. Для данного примера реализуется событие 3, после чего выражение момента времени t32 - новое время сбора статистики. Так до тех пор, пока минимально время не станет равным t41.
Философские аспекты моделирования

Объектом называется всё то, на что направлена человеческая деятельность.
В научном исследовании большую роль играет понятие гипотезы - определенное предсказание, основанное на небольшом количестве опытных данных, наблюдениях, догадках. Быстрая проверка гипотезы может быть проведена в ходе специально поставленных экспериментов.
При формировании и проверке правильности гипотезы в качестве метода суждения используется аналогия. Аналогией называется суждение о каком либо частном сходстве двух объектов.
Современные научные гипотезы создаются как правило по аналогии проверенным на практике положениям. Таким образом, аналогия связывает гипотезу с экспериментом.
Гипотезы и аналогии, отражающие реальный объктивно-существующий мир, должны обладать наглядностью или сводиться к удобным для исследования логическим схемам. Такие логические схемы, упрощающие рассуждения и позволяющие проводить эксперименты, уточняющие природу явлений, называются моделями.
Модель - объект - заместитель объекта оригинала, обеспечивающий изучение некоторых свойств оригинала.
Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.
Классификация видов моделирования

В зависимости от характера изучаемых процессов в некоторой сложной системе все виды моделирования можно разделить.
Детерминированное Стохастическое
Статическое Динамическое
Дискретное Непрерывное
Дискретно-непрерывное
Математическое Физическое
Аналитическое Имитационное В реальном масштабе времени
Комбинированное В нереальном масштабе времени
· Детерминированное моделирование отображает детерминированные процессы, т.е. такие, в которых отсутствуют всякие случайные воздействия.
· Стохастическое моделирование отображает случайные, вероятностные процессы и события.
· Статическое служит для описания сложной системы в конкретный момент времени.
· Динамическое отражает поведение системы во времени.
· Дискретное моделирование используется для описания процессов, происходящих в дискретные моменты времени.
· Непрерывное используется для описание непрерывных во времени процессов.
· Дискретно-непрерывное используется для тех случаев, когда хотят отразить наличие как дискретных, так и непрерывных процессов в системе.
· Под математическом моделированием будем понимать процесс установления данному реальному объекту некоторого математического объекта, называемого математической моделью и исследование этой модели, позволяющее получить характеристики реального объекта. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения.
· Для аналитического моделирования характерным является то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегрально-дифференциальных, конечно-разностных и т.д.) или логических условий.
Аналитические модели могут быть исследованы тремя способами:
1. Аналитическим. Получение в общем виде зависимости выходных характеристик от исходных.
2. Численным. Нельзя решить сложные уравнения в общем виде. Результаты получают для конкретных начальных данных.
3. Качественным. Нет возможности получения конкретных решений, но можно выделить некоторые свойства объектов или решений уравнений, например, оценить устойчивость решения.
· При имитационном моделирование алгоритм, реализующий модель, воспроизводит процесс функционирования системы во времени. Имитируются элементарные явления, составляющие процесс, с сохранением логической структуры объекта и последовательности протекания процесса во времени. Это позволяет по исходным данным получить сведения о состоянии процесса в определенные моменты времени. Преимуществом имитационного моделирования является возможность решения более сложных задач.
Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики системы, многочисленные случайные воздействия. Когда результаты, полученные имитационной моделью, являются реализацией случайных величин и функций, то для нахождения характеристик процесса функциональной системы необходимо его многократное воспроизведение с последующей статистической обработкой.
· Комбинированное моделирования при анализе сложных систем позволяет объединить достоинства отдельных методов. В нем проводят декомпозицию процесса функционирования сложной системы на подпроцессы и для тех, где можно используют аналитические модели, где нельзя - имитационное моделирование.
Технические средства математического моделирования

Цифровая техника

Цифровая техника является дискретной. Основная проблема - быстродействие (не догнать реальное время) слишком сложен механизм.
Аналоговая техника.
В отличие от дискретной техники в основе аналоговой лежит принцип моделирования, а не счета. При использовании в качестве модели некоторой задачи электронных цепей, каждой переменной величине ставится в соответствие определенную переменную величину электрической цепи. При этом основой построения такой модели является изоморфизм - подобие исследуемой задачи и соответствующей электрической модели. При определении критерия подобия используют специальные приемы масштабирования, соответствующие заданным параметрам.
Согласно своим вычислительным возможностям АВМ наиболее приспособлены для исследования объектов, динамика которых описывается обыкновенными дифференциальными уравнениями и уравнениями в частных производных, реже - алгебраическими, следовательно, АВМ можно отнести к классу специальных машин.
В общем случае под АВМ понимаем совокупность электрических элементов, организованных с систему, позволяющих изоморфно моделировать динамику изучаемого объекта. Функциональные блоки АВМ должны реализовывать весь комплекс арифметико-логических операций.
АВМ делятся по мощности (степень дифференциальных уравнений):
· малые ( n 10 )
· средние ( 10 n 20 )
· большие ( n 20 )

Гибридные ВМ

Широкий класс ВС, использующий как аналоговый, так и дискретный метод представления и обработки информации.
Подклассы гибридных ВМ:
1. АВМ с цифровыми методами численного анализа
2. АВМ, программируемые с помощью ЦВМ
3. АВМ с цифровым управлением и логикой
4. АВМ с цифровыми элементами (цифровые вольтметры, память)
5. ЦВМ с аналоговыми арифметическими устройствами
6. ЦВМ, допускающие программирование аналогового типа.
В АВМ накладывают и складывают сигналы.
АВМ система сопряжения АВМ -ЦВМ.
ЦВМ электрическая система согласования

Сравнительная характеристика АВМ и ЦВМ

Показатель
АВМ
ЦВМ
Тип информации
Непрерывный
Дискретный
Изменение значений
Величиной напряжения
Числовым значением
Базовые операции
Арифметические операции и интегрирование
Арифметические операции
Принцип вычисления
Высокопараллельный
Последовательно-параллельный
Режим реального времени
Без ограничений
Ограничен
Динамическое изменение решаемой задачи
Посредством системы коммутации
В диалоговом режиме
Требования к пользователю
Профессиональные знания, методика моделирования
Знание основ ПО ЭВМ
Уровень формализации задачи
Ограничен моделью решаемой задачи
Высокий
Способность к решению логических задач
Ограничена
Высокая
Точность
Ограничена (10-4)
Ограничена разрядностью (10-40)
Диапазон представления чисел
1 … 10-4

Зависит от разрядности

10-40 … 1040
Класс решаемых задач
Алгебраические и дифф. уравнения.
Любые
Специальные функции
Ограниченный набор
Неограниченный набор
Уровень миниатюризации
Ограничен
Высокий
Сфера применения
Ограничена
Практически любая
Пользовательский интерфейс
Низкий уровень
Высочайший уровень

Основные понятия теории моделирования

Пусть задана сложная дискретная система S.



Множество входных параметров

Множество внутренних параметров

Внешнее воздействие

Множество выходных параметров

Закон функционирования некоторой сложной системы в общем виде:

As - алгоритм функционирования - метод преобразования экзогенных характеристик в эндогенные (независимые в зависимые).

Система также имеет множество состояний в определенные моменты времени:

Начальное состояние:

Под математической моделью реальной системы понимается конечной множество переменных x(t), h(t), v(t) вместе с математическими связями между ними и характеристиками выходных параметров системы y(t).

Типовые математические схемы.

В практике моделирования на первоначальных этапах формализации объекта используют так называемые типовые математические схемы, к которым относятся хорошо проработанные и проверенные математические объекты.
процесс функционирования
системы
типовая математическая
схема
обозначение
Непрерывно-детерминированный подход
стандартные ДУ
D-схема
Дискретно-детерминированный подход
конечные автоматы
F-схема
Дискретно-стохастический подход
вероятностные автоматы
P-схема
Непрерывно-стохастический подход
система массового обслуживания
Q-схема
Обобщенные (универсальный)
агрегативная система
A-схема
Сложность возрастает сверху внизу. В агрегативных схемах используется иерархический подход.
Формализация и алгоритмизация процесса функционирования системы
Сущность машинного моделирования некоторой сложной системы состоит в проведении эксперимента с моделью, которая представляет программный комплекс, описывающей формально или алгоритмически поведение элементов системы в процессе её функционирования, т.е. взаимодействия друг с другом и с внешней средой.
Основные требования, предъявляемые к модели:
1. Полнота модели - модель должна предоставлять пользователю возможность получения необходимого набора характеристик, оценок системы с требуемой точностью и достоверностью.
2. Гибкость модели - модель должна давать возможность воспроизводить различные ситуации при варьировании структуры, алгоритмов и параметров модели. Причем, структура должна быть блочной, т.е. допускать возможные замены, добавления и исключения некоторых частей без переделки всей модели.
3. Компьютерная реализация модели должна соответствовать имеющимся технически ресурсам.
Процесс моделирования, включающий разработку и компьютерную реализацию модели, является итерационным. Этот итерационный процесс продолжается до тех пор, пока не будет получена некоторая модель, которую можно считать адекватной в рамках решения поставленной задачи.
Основные этапы моделирования больших систем

1. Построение концептуальной (описательной) модели некоторой системы и её формализация
2. Алгоритмизация модели и её программная реализация
3. Получение и интерпретация результатов моделирования
На первом этапе формулируется модель и строится её формальная схема. Основное назначение данного этапа - переход от содержательного описания объекта к его математической модели. Это наиболее ответственный и наименее формализованный этап. Исходный материал данного этапа - содержательное описание объекта.
1. Проведение границ между системой и внешней средой.
2. Исследование моделируемого объекта с точки зрения выделения основных составляющих процесса функционирования системы (по отношению к целям моделирования)
3. Переход от содержательного описания системы к формализованному описанию свойств процесса функционирования системы, т.е. к концептуальной модели. Переход от содержательного описания системы к её модели в данной ситуации сводится к исключению некоторых второстепенных элементов описания. Предполагается, что они не оказывают существенного влияния на ход процессов, исследуемых в системе с помощью модели.
4. Основные элементы модели группируются в блоки. Блоки I-ой группы представляют собой имитатор воздействия внешней среды. Блоки II-ой групп являются собственно моделью функционирования. Блоки III-ей группы носят вспомогательный характер для реализации I-ой и II-ой групп и для фиксации результатов моделирования.
5. Процесс функционирования системы разбивается на подпроцессы так, чтобы построение отдельных моделей подпроцессов было элементарным и не вызывало трудностей.
На втором этапе моделирования - этапе алгоритмизации модели и её машинной реализации, сформированная на первом этапе математическая модель реализуется в виде программы. Исходный материал - блочная логическая схема.
1. Разработка схемы моделирующего алгоритма.
2. Разработка схемы программы.
3. Выбор технического средства для реализации компьютерной модели.
4. Этап программирования модели (программирование и отладка).
5. Проверка достоверности модели на различных работающих тестовых примерах.
6. Составление технической документации (логические схемы, схемы программ, спецификации)
На третьем этапе (получение и интерпретация результатов) компьютер используется для проведения рабочих расчетов по готовой программе модели. Результат этих расчетов позволяет проанализировать и сделать выводы о характеристиках процесса функционирования моделируемой системы.
1. Планирование машинного эксперимента с моделью системы (активный и пассивный эксперименты). Необходимо составление плана проведения эксперимента с указанием комбинации переменных и параметров, для которых должен проводится эксперимент. Главная задача - дать максимальный объем информации об объекте моделирования при минимальных затратах машинного времени.
2. Проведение рабочих расчетов (контрольная калибровка модели)
3. Статистическая обработка результатов расчетов.
4. Интерпретация результатов моделирования, подведение итогов
5. Составление технической документации.
Различие стратегического и тактического планирования машинных экспериментов заключается в том, что в первом случае ставится задача построения оптимального плана эксперимента для достижения цели, поставленной перед моделированием (оптимизация структуры алгоритмов и параметров системы). Во втором случае, преследуются частные цели оптимальной реализации каждого конкретного эксперимента из множества необходимых экспериментов, заданных при стратегическом планировании.
Три основных класса ошибок:
1. Ошибка формализации - недостаточно подробное описание модели
2. Ошибка решения - некорректный или слишком упрощенный метод построения модели
3. Ошибка задания параметров.
Проверка адекватности модели.
Проверка адекватности модели заключается в анализе её соразмерности, а также равнозначности системы. Адекватность нарушается из-за идеализации внешних условий и пренебрежения некоторыми случайными факторами.
Считается, что модель адекватна с системой, если вероятность того, что отклонение параметров y не превышает некоторой предельной величины больше допустимой вероятности.
На практике использование данного критерия невозможно, т.к.:
1. Для проектирования или моделирования системы отсутствует информация о выходной характеристики y.
2. Как правило, система оценивается не по одной, а по множеству характеристик
3. Характеристики могут быть случайными величинами или функциями.
На практике оценка адекватности обычно проводится путем экспертного анализа разумности результатов моделирования.
Выдвигаются следующие виды проверки:
1. Проверка моделируемых элементов
2. Проверка внешних воздействий
3. Проверка концептуальной модели
4. Проверка формализованной математической модели
5. Проверка программной модели
6. Проверка способов измерения и вычисления выходных характеристик
Если модель неадекватна объекту, то выдвигаются следующие типы изменения:
· Глобальные - возникают в случае обнаружения методических ошибок концептуальной или математической модели
· Локальные - связаны с уточнением некоторых параметров и алгоритмов. Выполняются путем замены внешних воздействий на эквивалентные, но более точные.
· Параметрические изменения некоторых специальных параметров, называемые калибровочными.
Завершается данный этап определением и фиксацией области пригодности модели - множество условия, при соблюдении которых точность результатов моделирования находится в допустимых пределах.
Схема взаимодействия технических этапов моделирования

Вычислительные системы как объект моделирования

Уровни проектирования:
1. Системное проектирование
Цель - определение производительности. Вычислительная система рассматривается целиком. Отдельные её элементы - ЦП, память и т.д.
ВС := <ЦП, ОП, …><ОС>
2. Функционально-логический уровень проектирования
a. Подуровень регистровых передач.
Исследование команды.
b. Логическое проектирование.
Исследование на уровне логических элементов.
3. Схемотехнический уровень.
Вопросы конкретной реализации (например, как искажается сигнал).
4. Конструкторский уровень.
Оптимизация размещений (например, теплообмен).
Проектирование происходит сверху вниз.
Моделирование на системном уровне.
При моделировании новой или модернизации действующей ВС и сетей необходимо предварительно оценить эффективность их функционирования c учетом различных вариантов структурной организации. Эти варианты могут отличаться составом и характеристиками модулей (моделей устройств), структурой межмодульных связей, режимами работы, алгоритмами управления и т.д. Именно в таких случаях используются модели ВС.
Под Вычислительным Средством понимаем комплекс аппаратных и программных средств, которые в совокупности выполняют определенные обработочные функции.
Операционная Система - набор ручных и автоматических процедур, которые позволяют группе людей эффективно использовать вычислительную установку.
< и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.