Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат В модели Кронига-Пенни рассматривается движение электронов в линейной цепочке прямоугольных потенциальных ям. Зависимость энергии электрона от волнового вектора. Зоны Бриллюэна. О структуре энергетических зон. Случаи зонной структуры твёрдых тел.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 11.12.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


26
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
«Модель Кронинга-Пенни. Структура энергетических зон»

МИНСК, 2008
Модель Кронига-Пенни.

d=a+b
E<
В модели Кронига-Пенни рассматривается движение электронов в линейной цепочке прямоугольных потенциальных ям. Амплитудное уравнение Шредингера для движения в таком поле имеет вид:
Как показал Блох, решением этого уравнения является волновая функция такого типа:
Она представляет собой произведение уравнения плоской бегущей волны , описывающей движение свободного электрона в поле с постоянным потенциалом, на периодическую функцию U(x), зависящую от волнового числа k и имеющую тот же период, что и период потенциала U(x) - период решетки d.
Для областей I(U=0) и областей II(U=) получаем:
;
;
В области потенциального барьера волновой вектор принимает мнимое значение , а за пределами барьера при =0 действительное б, А. В, С, Д- постоянные коэффициенты.
С помощью функции Блоха найдем вид функции U(x) для областей I и II:
Определить А, В, С, D можно с учётом того, что функция u(x) и её первая производная являются непрерывными в местах скачка потенциала
( с U1=0 до U2=U0 )
И обладает свойствами периодичности с периодам равным d=a+b
.
Решая систему из четырёх уравнений при условии и что определитель равен 0 получаем:
Использование этих условий позволяет определить не только А, В, С, D, но установить связь между и . Введём дополнительные упрощения и будем считать, что ширина барьера , а высота так что произведение bU=const.
Для бесконечно тонкого и бесконечно высокого барьера получаем:
, где .
Это уравнение выражает зависимость энергии электрона E, входящей в переменную от волнового вектора для барьеров различной прозрачности Р.
Так как изменяется в пределах от (+I) до (-I) то может принимать только такие значения при которых:.
В соответствии с формулой:
заштрихованные участки определяют область разрешенных энергий электрона - энергетические зоны.
Эти зоны отделены друг от друга полосами запрещенных энергии - запрещенными зонами. Им отвечают области значений , в которых, в которых должна была бы быть больше +I или меньше -I, что запрещено выражением .
С увеличением энергии электрона ширина разрешенных зон увеличивается, а ширина запрещенных зон уменьшается.
Ширина зон зависит также от параметра Р. При разрешенные зоны сужаются, превращаясь в дискретные уровни, соответствующие где т.е. к значениям, соответствующим изолированной потенциальной яме. При , наоборот, исчезают запрещенные зоны и электрон становится свободным.
Выразим Е с помощью
Рассмотрим зависимость энергии электрона от волнового вектора . Штрихпунктирная линия изображает зависимость Е() для свободного электрона.
Внутри каждой зоны энергии электрона непрерывно растет с ростом волнового вектора. При значениях: энергия претерпевает разрыв, приводящий к образованию запрещенных зон.
Мы получим формулу Вульфа-Бреггa, выражающую условие отражения волн от плоской решетки для случая, когда угол падения равен 90°. Разрывы в энергетическом спектре электрона в кристалле происходят при выполнении условия Брегговского отражения электронных волн от плоскости решетки. Электроны с такой длиной волны претерпевают в кристалле полное внутреннее отражение и распространяться в кристалле не могут.
Пусть на решетку действуют лучи с длиной волны л. Лучи, отраженные от атомных плоскостей, интерферируют между собой и
усиливают или ослабляют друг друга.
Усиление происходит в том случае, если разность хода лучей отраженных от сосед-них атомных плоскостей, будет целократна длине волны. Разности хода лучей
Поэтому условие усиления запишется:
Лучи падающие на атомные плоскости под углом, удовлетворяющим этому условию, полностью отражаются и через решетку пройти не могут. При мы получаем:
В случае связанного электрона при значениях волнового вектора кратных р/a энергия терпит разрыв. С увеличением силы связи электро-на высота разрывов становится больше.
Зоны Бриллюэна.

При изменении волнового вектора от О до ± 2(р/a), энергия растет при k = р/a непрерывно, она претерпевает первый разрыв. При дальнейшем увеличении k энергия снова растет непрерывно, пока при k = ±2(р/a) не испытает второго разрыва и т.д.
Области значений k , в пределах которых энергия электрона изменяется непрерывно, а на границах претерпевает разрыв, называются зонами Бриллюэна.
Зона I для линейной модели кристалла простирается от - р /a до + р/a, зона II - от -2(р/a) до - р /a и от + р /a до +2(р /a) и имеет протяженность равную 2(р/a). Все зоны Бриллюэна имеют одну и туже протяженность равную 2(р/a).
Понятие зон Бриллюэна распространяется и на случай двух- и трехмерных решеток. В пределах каждой зоны энергия электрона изменяется непрерывно с изменением волнового вектора, на границах зон она претерпевает разрыв. Утверждения о равенстве всех зон Бриллюэна справедливо для двух- и трехмерных случаев.
Теперь об обратной решетке. Всякой пространственной решетке может быть противопоставлена обратная решетка. Обратная решетка обладает теми же геометрическими свойствами, что и прямая. В основе обратной решетки лежит элеметарная ячейка, образуемая тремя независимыми базисными векторами b1; b2 .
Параллельным переносом элементарной ячейки (трансляцией) можно получить всю обратную решетку. Все узлы обратной решетки могут быть описаны вектором:
Базисные векторы обратной решетки (или постоянные обратной решетки) связаны с постоянными прямой решетки следующими соотношениями в виде векторных произведений:
Из приведенных выражений видно, что вектор b перпендикулярен как a2 так и a3. Численные значения базисных векторов обратной решетки равны:
b1 = 2р/a1 ; b2 = 2р/a2 ; b3= 2р/a3
Каждому виду элементарной ячейки в прямой решетке соответствует определенный вид элементарной ячейки в обратной решетке. Так, простой кубической ячейке соответствует также простая кубическая ячейка обратной решетки с ребрами 2р/a (см. рис.)
Более сложную обратную решётку имеют гранецентрированная кубическая решётка и решётка типа алмаза (см. рис.).
Зона Бриллюэна трёхмерного кристалла совпадает с его обратной решёткой. В кристалле в с простой прямоугольной решёткой энергия электрона является периодической функцией k с периодами 2р/а1, 2р/а2, 2р/а3 по соответствующим осям решётки (см. рис.). Таким образом, пространство обратной решётки представляет собой пространство волнового вектора.
Зона Бриллюэна для решётки типа алмаза представляет собой многогранник, окружённый шестью плоскостями типа (100) и восемью плоскостями типа (111). Зона Бриллюэна лежит в пределах волнового вектора -2р/а ? k ? 2р/а.
Обозначения: [0 2р/а 0], [0 1 0].
Электроны обладают волновыми свойствами, и их движение через кристалл можно представлять себе как процесс распространения электронных волн. Если для этих волн условие Вульфа-Брэггов не выполняется, то движение электрона описывается бегущей волной eikx и связь энергии E с волновым числом является однозначной. При выполнении условия Вульфа-Брэггов, т.е. в точках kn=nр/а наступает отражение электронных волн от атомных плоскостей, интерференция отражённых волн с бегущими и образование стоящих волн. Поэтому в точках kn=nр/a электроны следует представлять уже не бегущей волной, а стоячей, состоящей из двух одинаковых бегущих волн:
eikx и e-ikx,
распространяющихся в противоположные стороны. Эти волны дают два решения уравнения Шрёдингера. Для точки k=р/a эти решения имеют следующий вид:
ш1=A1ei(р/a)x- B1e-i(р/a)x,
ш2=A2ei(р/a)x+B2e-i(р/a)x.
Решениям ш1 и ш2 соответствуют разные энергии. Решению ш2 отвечает энергия Emin, которая соответствует верхней границе первой зоны (точка А); решению ш1 -- энергия Emax, отвечающая нижней границе второй зоны (точка B). При k несколько меньшем р/а энергия электрона меньше Emin; при k несколько больше р/а собственные значения энергии электрона лежат выше Emax. В промежутке между Emin и Emax не лежит ни одно собственное значение энергии электрона, т.е. область между Emin и Emax представляет собой запрещённую зону энергии.
О структуре энергетических зон.
В трёхмерном кристалле периодичность решётки в разных направлениях различная: a ? b ? c. Поэтому в трёхмерном векторном пространстве (kx, ky, kz) kx = ±nр/a, ky = ±nр/b, kz = ±nр/c, при которых наступает брэгговское отражение электронных волн и возникают разрывы в энергетическом спектре электрона, для разных направлений в решётке должны быть различными.
I. Предположим, что область энергии, запрещённая для одних направлений, является разрешённой для других направлений. В этом случае запрещённые полосы, соответствующие этим направлениям, не перекрываются.
На рисунке: кривые зависимости энергии электрона от волнового числа для направлений kx, ky, kz. Запрещённые полосы, соответствующие этим направлениям, не перекрываются.
Направления не перекрываются
Кривые зависимости энергии электрона от волнового числа для направления kx ky kz. Запрещенные полосы соответствующие этим направлениям не перекрываются.
Запрещенные полосы перекрываются.
Поэтому, хотя определенные области энергий запрещены для электронов, движущихся в одном направлении, они являются разрешимыми для электронов движущихся в другом направлении. Энергетический спектр в целом оказывается квазинеприрывным.
2. Случай. Предположим теперь, что полосы запрещенных энергий для направлений a, b, c, перекрываются. В этом случае существуют области энергий, запрещенные для электронов движущихся в любых направлениях. Энергетический спектр таких электронов будет состоять тогда из зон разрешенных энергий, разделенных полосами запрещенных энергий.
Внутри зоны волновое число h меняется от -П/а до П/а . Положение периодических краевых условий ограничивает k следующими значениями
k=n2П/L, n=± 0, ± 1, ± 2, ... ± L/2
где L - длина атомной цепочки, a - параметр решетки.
Из формулы видно, что число независимых значений k равно L/a=N, где N - число атомов в цепочке.
Таким образом, в интервале -П/а до П/а k может принять только N различных значений, которым соответствует N различных энергетических уровней, для трехмерного кристалла N представляет собой число атомов в кристалле.
Приведенные зоны.
Рассмотренные представления о периодическом характере зависимости энергии от волнового вектора, позволяют привести зависимость к первой зоне Бриллюэна.
Энергия электронов в каждой разрешенной энергетической зоне является периодической функцией k при переходе из одной зоны Бриллюэна в другую. Период этой зависимости для линейной решетки определяется величиной 2р/а. Это означает, что последующие зоны Бриллюэна дают состояния, эквивалентные состояниям первой зоны Бриллюэна. Иначе говоря, можно сдвинуть все кривые E(k) в разных зонах Брилллюэна на целое число периодов 2р/а, так чтобы они попали в первую зону Брилллюэна. Совокупность кривых E(k) для разных энергетических зон, нанесенных в первой зоне Брилллюэна, позволяет представить всю зонную схему в пределах одной - приведенной зоны Брилллюэна.
А) -завивисимость энергии электрона от волнового вектора для случая слабой связи. Штриховой Линией показана зависимость Е(h) для свободного электрона;
Зависимости энергии электрона от волнового вектора для трех направлений в h-пространстве, когда энергетические зоны не перекрываются (Б) и валентная зона в направлении kz перекрывается с зоной проводимости в направлении ky. Удобно пользоваться упрощенным видом энергетических зон, для чего энергетическую зону представляют в виде набора энергетических уровней, принадлежащих всему объему кристалла (см. Рис.).Число Энергетических уровней в каждой зоне, очевидно, равно числу разрешенных значений волнового вектора. При построении энергетических уровней необходимо иметь в виду, что в качестве исходных зон следует выбирать зоны Бриллюэна в тех направлениях, в которых имеются максимальные значения энергии. Например, для кристалла с кубической решеткой такими направлениями являются (100) и (100) в k-пространстве.
Возможные случаи зонной структуры твёрдых тел.

В нейтральном изолированном атоме внутренние энергетические уровни полностью заполнены. Внешний валентный уровень может быть незаполненным, частично заполненным, заполненным полностью. В зависимости от того, каким является внешний валентный уровень отдельных атомов и в твёрдом теле заполнение зон оказывается неодинаковым. Зоны, образованные за счёт внутренних уровней всегда полностью заполнены электронами. В ряде случаев зона, образованная валентными уровнями, может оказаться не полностью заполненной NZ(N - число ат., Z - число эл., 2N - число квантовых состояний в каждой зоне, NZ/2N = Z/2 - число заполненных зон.).
Зону, образованную в твёрдом теле за счёт валентных уровней отдельных атомов, называют валентной зоной. Степень заполнения валентной зоны электронами определяются химической природой атомов, образующих твёрдое тело, кристаллической структурой и ещё целым рядом факторов.
В изолированном атоме выше валентного уровня располагаются уровни которые могут и не быть заполнены электронами, но на которые электроны перейдут, если атом будет возбуждён. Для этого валентному электрону необходимо преодолеть энергетический барьер, равный потенциалу возбуждения атома.
При образовании из отдельных атомов твёрдого тела выше валентной зоны всегда будет находится полностью свободная от электронов зона, которую называют зоной проводимости.
Степень заполнения энергетических зон.

Металлические кристаллы либо имеют незаполненную валентную зону, либо их валентная зона перекрывается зоной проводимости.
Все одновалентные элементы являются металлами, поскольку их валентная энергетическая зона заполнена наполовину.
Двухвалентные элементы имеют полностью заполненную валентную зону. Однако все они являются металлами. Это объясняется перекрытием валентной зоны зоной проводимости.
Рассмотрим перекрытие зон на примере бериллия (2эл. - I S и 2-2 S). Состояния 2p - свободны. При образовании кристалла N атомов формируется 1s и 2s зоны имеющие по и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.