Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Использование монтажной микросварки при монтаже кристаллов ИМС с помощью золотых и алюминиевых выводов. Процесс УЗ-микросварки на основании введении механических колебаний УЗ-частоты в зону соединения, пластическая деформация приконтактной зоны.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 27.11.2008. Год: 2008. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство образования Республики Беларусь
Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

кафедра РЭС

РЕФЕРАТ
На тему:

«МОНТАЖНАЯ МИКРОСВАРКА»
МИНСК, 2008
Монтажная микросварка применяется при монтаже кристаллов ИМС с помощью золотых и алюминиевых выводов. Процесс УЗ-микросварки основывается на введении механических колебаний УЗ-частоты в зону соединения, что приводит к пластической деформации приконтактной зоны, разрушению и удалению поверхностных пленок с созданием атомно-чистых (ювенильных) поверхностей, что интенсифицирует процесс образования активных центров и тем самым приводит к образованию прочного сварного соединения без большой пластической деформации свариваемых деталей.
Наиболее часто применяются продольные колебания частотой 66 кГц , вводимые в зону сварки с помощью волноводной системы (рис. 1.), состоящей из преобразователя 1, акустического трансформатора 2, концентратора 3. Колебания от рабочего инструмента 4 сообщаются проволочному выводу 5, совмещенному с контактной площадкой 6, расположенном на акустической опоре 7. Волноводная система крепится в узле колебаний держателем 8.
рис. 1. Схема ультразвуковой микросварки
Режим сварки на заданной частоте характеризуется следующими параметрами:
1) энергией ультразвуковых колебаний Е:
,
где A - амплитуда колебаний ( 2-5 мкм); F - частота колебаний; t - время микросварки. Увеличение времени сварки повышает прочность сварного соединения за счет роста суммарной площади очагов схватывания до определенного предела, увеличение времени более 3-5с приводит к усталостному разрушению соединения;
2) акустической мощностью Рак, вводимой в сварочную зону, которая связана с электрической мощностью Р, подводимой к преобразователю, соотношением
,
где hм - механический КПД преобразователя (0,5-0,7 для магнитострикционных, 0,8-0,9 для пьезоэлектрических); Р0 - мощность потерь на подмагничивание;
3) контактным усилием сжатия F, которое зависит от толщины свариваемых элементов и подводимой мощности. При недостаточном усилии сжатия не достигается необходимое сцепление между инструментом и деталью, так как происходит проскальзывание инструмента по детали. Увеличение усилия сжатия приводит к чрезмерной деформации сварной точки и снижению прочности соединения. Оптимальная степень обжатия вывода выбирается в соответствии с коэффициентом деформации 0,5-0,6:
,
где dпр - диаметр проводника; Нд - высота деформированной зоны;
4) формой рабочей части инструмента, которая выбирается из соображения, что длина деформируемого при сварке проводника должна быть равной 2-3 диаметрам проводника. Повышению прочности способствует небольшой паз в центре рабочей части вдоль свариваемой проволоки.
Функциональные особенности конструктивных элементов инструмента при УЗ-микросварке заключаются в следующем (рис. 2.):
диаметр направляющего отверстия выбирается из условия устранения возможности забивки его материалом привариваемой проволоки:
;
угол наклона направляющего отверстия определяется условиями перемещения инструмента на вторую сварку, зависит от высоты и длины проволочной перемычки:
,
где h - высота проволочной петли; g - перемещение стола. Оптимальная величина угла a составляет 30;
длина рабочей части инструмента L определяет длину деформируемой при сварке проволоки и выбирается из соотношения ; оптимальное значение L составляет 0,1 мм для проволоки диаметром 27 мкм и 0,2 мм для проволоки диаметром 60 мкм;
глубина продольного паза b зависит от коэффициента деформации kд = 0,6:
b = (0,01 - 0,05) мм;
удаление выхода отверстия от задней кромки рабочей площади инструмента должно обеспечивать симметрию петли проволочной перемычки: lуд = 8 dпр;
угол наклона задней кромки рабочей площадки b должен обеспечивать подрезку проволоки после второй сварки без остаточных напряжений в ней. Оптимальная величина угла b составляет 60.
рис. 2. Рабочая часть инструмента для УЗ-микросварки
Для присоединения внахлест проволоки из алюминиевых сплавов УЗ-микросваркой используют капилляры из твердых сплавов типа ВК-20 с упрочненной рабочей поверхностью типа КУТ32 - 27 - 95 - 15, где КУТ - капилляр для УЗ - и термозвуковой сварки, 27 - диаметр проволоки, 95 - размер L, 15 - размер R.
Анализ факторов, влияющих на качество и надежность микросварных соединений, показывает, что все технологические параметры УЗ-микросварки оказываются настолько тесно связанными, что неудачный выбор одного из них изменяет ранее установленные значения других. Поэтому для обеспечения высокого качества и воспроизводимости ультразвуковой сварки важны: обеспечение заданной микрогеометрии поверхности контактных площадок; оптимизация технологических параметров УЗ-микросварки методом математического моделирования; разработка новых способов микросварки с активацией процесса физико-химического взаимодействия контактирующих металлов.
УЗ-микросварка позволяет соединять без значительного нагрева самые разнообразные металлы (алюминий, медь, никель, золото, серебро), а также металлы с полупроводниковыми материалами. Выполнение проволочного соединения контактной площадки на кристалле с траверсой корпуса требует наряду со сварочными операциями действий по совмещению инструмента с местом сварки на кристалле и корпусе схемы.
В 80-х гг. создана полностью автоматизированная установка УЗ-микросварки ЭМ-4020, имеющая управляющую микроЭВМ "Электроника-60",что резко увеличило производительность до 12500 сварок в час. Новое поколение установок, к которому относится ЭМ-4060, построено с применением линейных шаговых двигателей и системы технического зрения, что обеспечивает наивысшую производительность от 18 до 30 тыс. сварок в час (табл. 1).
Табл. 1 - Характеристика установок УЗ-микросварки
Параметры
ЭМ-4020б
ЭМ-4060
Мод. 1484 (США)
Производительность, сварок/ч
14 000
16 000
18 000
Диаметр проволоки, мкм
27-60
25-40
20-60
Размеры рабочего поля стола, мм
2525
3030
10151
Точность позиционирования, мкм
25
20
3,2
Усилие сжатия, Н
0,2-1,2
0,2-1,2
0,2-0,25
Тип сварочного соединения
Внахлестку
Встык-внахлестку
Термозвук, золотым шариком
В новых моделях автоматов (ЭМ-4060П и ЭМ-4020П) для присоединения выводов ИМС используется единая стойка управления, состоящая из однотипных блоков управления, распознавания и питания ультразвуковых генераторов (УЗГ), а также прецизионные загрузочно-разгрузочные устройства (ЗРУ) и оптико-телевизионные системы.
Система технического зрения (СТЗ) позволяет распознавать и определять положение кристаллов и траверс. Положение корпуса определяется по одной траверсе при совмещении только по линейным координатам и по двум траверсам при совмещении по линейным координатам и углу. СТЗ может определять положение каждой траверсы индивидуально.
Усовершенствованная УЗ-система автоматов характеризуется следующими особенностями. Предусмотрена непрерывная автоматическая подстройка частоты (АПЧ) в полосе не менее 5 кГц с погрешностью отслеживания частоты резонанса ультразвукового преобразователя (УЗП) не более 20 Гц и времени захвата не более 20 мс. Встроенная модернизированная система контроля функционирования и компенсации ошибок АПЧ позволяет вдвое (по сравнению с ЭМ-4020б) уменьшить максимальную длительность компенсации ошибок АПЧ (время модуляции), увеличить устойчивость АПЧ и обеспечить заблаговременную сигнализацию об отказе системы.
В УЗ-системе имеется датчик, сигнализирующий о создании требуемого акустического контакта между инструментом и соединяемыми деталями и позволяющий не только определять позицию сварки по координате Z, но и увеличивать воспроизводимость качества соединений. Подача УЗ-колебаний на инструмент (дежурного сигнала) в промежутках между сварками снижает трение между инструментом и проволокой при формировании петли, облегчает отделение инструмента от сформированного соединения. Встроенное устройство контроля сварочных систем, программно и аппаратно поддержанное управляющей системой установки, позволяет осуществлять функциональное диагностирование УЗ-системы и непрерывное наблюдение за ходом процесса формирования каждого сварного соединения и на этой основе осуществлять 100%-й контроль качества при сборке ИМС любого типа в любом корпусе.
Для повышения качества и надежности микросварных соединений применяют различные методы активации: электрическим током и ИК-излучением. Импульс электрического тока пропускают через оба соединяемых элемента в направлении, обеспечивающем электроперенос диффузионно-подвижного металла в соединении (рис. 3, а). Поскольку в соединении Al-Ni алюминий обладает большим коэффициентом диффузии, чем никель, электрический ток через соединение стимулирует диффузионное взаимодействие в процессе микросварки, что приводит к образованию интерметаллидов Al3Ni, имеющих повышенную прочность, и вызывает увеличение надежности микросварного соединения.
рис. 3. Схемы УЗ-микросварки с токовой активацией (а) и ИК-активацией (б): 1 - генератор УЗ-колебаний; 2 - преобразователь; 3 - волновод; 4 - инструмент; 5 - проволока; 6 - контактная площадка; 7 - устройство токовой активации; 8 - блок питания; 9 - блок управления; 10 - блок ИК-активации
ИК-подогрев соединяемых элементов при УЗ-микросварке снижает до минимума эффект проскальзывания проволочного вывода, увеличивает его пластичность, степень деформации и фактическую площадь контакта вывода с контактной площадкой (рис. 3, б). Кроме того, тепловая активация соединения до температур, не превышающих температуру рекристаллизации металлов, участвующих в соединении, ускоряет диффузионные процессы в зоне контакта, что в итоге способствует увеличению прочности микросварных соединений и повышению надежности изделий.
Термозвуковая сварка (ТЗС) находит все возрастающее применение при сборке изделий микроэлектроники. В ТЗС соединения формируются в результате совместного действия температуры, энергии ультразвуковых колебаний сварочного инструмента и усилия нагружения инструмента. Данный способ сварки как бы объединяет отдельные качества термокомпрессионной и УЗ-сварки, обеспечивает высокое качество соединения при существенном смягчении режимов сварки, прежде всего температуры. ТЗС используется в первую очередь при автоматизированной сборке приборов, критичных к температурам свыше 200-250 С. Применим этот способ сварки и для сборки толстопленочных ГИС. Качественные, устойчивые к повышенным температурам (150 С) и термоциклированию (100 циклов; -55...+150 С) соединения золотой проволоки с медными печатными проводниками получаются ТЗС при температуре подложки 105-200 С. Практически ТЗС начинают широко применять и для сборки ИМС и БИС массовых серий с целью смягчения режимов и снижения критичности сварочного процесса к колебаниям качества соединяемых материалов.
Из всех видов сварки, применяемых в производстве изделий микроэлектроники, ТЗС является наиболее сложной в реализации, но отличается большой гибкостью в выборе режимов, а поэтому весьма перспективна для автоматизированной сборки. Использование при ТЗС ультразвуковой энергии наряду со снижением температуры обусловило ряд преимуществ: увеличение скорости, относительная легкость установления приемлемых режимов, улучшение свариваемости более широкой номенклатуры материалов соединяемых поверхностей. Важным достоинством ТЗС по сравнению с УЗС является меньшая критичность к жесткости конструктивных элементов корпуса.
Термокомпрессионной сваркой (ТКС) называют микросварку давлением в твердой фазе элементов, нагреваемых от постороннего источника теплоты, с локальной пластической деформацией в зоне сварки. Различают термокомпрессионную микросварку с общим, импульсным, косвенным и комбинированным нагревом.
Основными параметрами режима термокомпрессии являются: усилие сжатия соединяемых элементов F, температура нагрева инструмента Т, длительность выдержки под давлением t.
Выбор усилия сжатия F определяется допустимой деформацией присоединяемого проводника, которая для золотой проволоки составляет 50-70 %, и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.