Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Влияние нелинейностей на свойства систем и их фазовые портреты. Устойчивость нелинейных систем в малом, в большом и в целом. Системы, эквивалентные устойчивым линейным и абсолютная устойчивость. Области устойчивости системы в фазовой плоскости.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 26.09.2014. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Федеральное агентство по образованию Российской Федерации
Орловский Государственный технический университет
Орловский технологический институт
Орловский политехнический колледж
Реферат
По дисциплине: «Автоматическое управление»
Тема: «Нелинейные САУ»
Студент:
Группа:
Специальность: 220301
Реферат защищен с оценкой:
Руководитель: Гаранжа Т.С.

Орел 2007
Нелинейные системы

Влияние нелинейностей на свойства систем

При рассмотрении условий устойчивости линейной модели было установлено, что устойчивость или неустойчивость линейной модели зависят только от свойств системы и совершенно не зависят от величины начального отклонения, входного сигнала или возмущения. Было показано, что у неустойчивой линейной системы значения отклонений от любых начальных условий неограниченно растут.
Если не рассматривать системы, параметры которых точно соответствуют границе области устойчивости, то оказывается, что в линейной системе возможны лишь два типа движений. Устойчивая линейная система после любого отклонения с течением времени стремится (монотонно или немонотонно) к положению равновесия. Неустойчивая линейная система, наоборот, после любого начального отклонения монотонно или немонотонно уходит от равновесия, и её выходной сигнал неограниченно растёт по абсолютной величине. При параметрах, точно соответствующих границе области устойчивости, возможны незатухающие колебания. Амплитуда этих колебаний зависит от начальных условий. При самом незначительном изменении параметров колебания превращаются в затухающие или неограниченно нарастающие. Никакие иные движения в линейной модели невозможны.
Движения в реальных системах могут быть значительно разнообразнее движений, возможных в линейной модели.
Например, в реальных системах часто наблюдается возникновение незатухающих колебаний. Эти колебания обладают определенной устойчивостью: после возмущения они восстанавливаются с течением времени, то есть восстанавливаются и форма колебаний, и их частота. Форму и частоту этих колебаний можно изменять, меняя параметры системы.
Реальная система отличается от её линейной модели не только возможностью возникновения незатухающих колебаний, но и тем, что в ней (реальной системе) характер движений часто зависит от величины вызвавшего их начального возмущения. В реальной системе может существовать такой порог, что начальные возмущения, не превосходящие этот порог, вызывают движение, сходящееся к положению равновесия, а в результате возмущений, превосходящих указанный порог, в системе устанавливаются устойчивые незатухающие колебания.
В ряде случаев в системах автоматического регулирования возможны не один, а несколько режимов незатухающих колебаний, причем только от величины начального возмущения зависит, какие из этих колебаний установятся в системе. Так, например, нередко можно наблюдать, что после небольших начальных возмущений, не превосходящих определенного порога, в системе устанавливаются высокочастотные незатухающие колебания с амплитудой, меньшей этого порога. Если же начальные возмущения превзойдут этот порог, то в системе устанавливаются низкочастотные незатухающие колебания, имеющие значительно большую амплитуду.
Явления подобного рода могут быть обусловлены только факторами, не учитываемыми при рассмотрении линейной модели. Такими факторами являются нелинейности, которые при использовании линейной модели заменяются линейными зависимостями (в случае линеаризуемых нелинейностей) или вообще выбрасываются из рассмотрения (в случае нелинеаризуемых нелинейностей). Для того чтобы описать указанные движения и, в частности, незатухающие колебания, необходимо учесть наличие нелинейностей. Отметим, что при линеаризации, осуществляемой в системе (а не только в её модели) с использованием функционального блока с обратной нелинейностью, система или её линеаризуемая часть действительно становятся линейными.
Незатухающие колебания в системах автоматического регулирования, о которых выше шла речь, возникают при отсутствии внешних периодических воздействий только за счет внутренних свойств системы регулирования. Их частота целиком определяется свойствами системы и меняется при изменении ее параметров. Это -- типичные автоколебания, возникающие благодаря равенству потерь энергии за период колебаний притоку энергии от внешнего источника. Таким внешним источником энергии служит обычно регулируемый объект или имеющиеся в системе усилители сигнала. Только благодаря наличию нелинейностей возможен указанный выше баланс энергии за колебательный цикл, и вычисление условий существования незатухающих колебаний сводится, по существу, к определению условий реализации этого баланса.
Исследование всех движений, возможных в нелинейных системах, -- задача очень сложная. До сих пор не разработаны аналитические методы решения задач такого рода в сколько-нибудь общих случаях. Наибольшие трудности возникают при определении порогов для начальных возмущений, разграничивающих области с различными типами переходных процессов. Внутри каждой из таких областей процессы сходятся к одинаковым (или однотипным) установившимся состояниям (например, к равновесиям или к незатухающим колебаниям). Аналитические методы позволяют решать част-ные нелинейные задачи двух типов.
Во-первых, это определение условий, при которых после любого возмущения система движется к положению равновесия, то есть условия, при которых нелинейная система ведет себя с практической точки зрения подобно устойчивой линейной системе.
Во-вторых, это нахождение (чаще всего приближенно) возможных в системе периодических режимов вне зависимости от их устойчивости и, тем более, без точного определения границ устойчивости этих периодических режимов.
Сколько-нибудь более полное аналитическое исследование нелинейных систем удается проводить лишь в частных случаях, например в некоторых системах, описываемых дифференциальными уравнениями второго или третьего порядка или в системах, дифференциальные уравнения которых содержат специальным образом входящие малые параметры. Поэтому за последние десятилетия интенсивно развивается иной подход, основанный на компьютерном моделировании нелинейных систем. Современные продвинутые методы решения сложных систем нелинейных дифференциальных уравнений позволяют путём многократных прогонов задач получать достаточно полные картины поведения нелинейных систем при са-мых разных возмущениях и вариациях параметров систем. На первый план выдвинулась задача не получения точных решений аналитическим путём, а построения моделей, адекватно описывающих поведение системы. И тут очень важными являются предварительные качественные оценки поведения системы, получаемые из аналитических построений. Одним из наиболее эффективных и наглядных методов качественного исследования поведения систем является построение их фазовых портретов.
Фазовые портреты нелинейных систем

Совершенно так же, как и в линейной системе, процесс регулирования, описываемый уравнениями, содержащими нелинейности, может быть представлен на фазовой плоскости или в фазовом пространстве.
Рассмотрим и здесь в качестве основного примера случай, когда движения описываются двумя дифференциальными уравнениями первого порядка:
гдеf1(x1, х2) и f212) -- заданные, в общем случае нелинейные функции указанных аргументов.
Дифференциальное уравнение фазовых траекторий получается, если вместо производных по времени ввести производную dx1/dx2.
Получаем:
К фазовой траектории может быть проведена только одна касательная, и, следовательно, фазовые траектории не пересекаются во всех тех точках фазовой плоскости, где не обращаются одновременно в нуль f11, x2) и f21, х2). Особые точки системы находятся из условия dx1/dx2 = 0/0, то есть определяются как общие корни двух уравнений:
В предыдущем случае при рассмотрении линейной системы было:
и уравнения имели только одно общее решение: х1 = х2 =0. В плоскости х1, х2 этм условия в случае линейной системы определяют две прямые линии, пересекающиеся в начале координат (рис.1, а). Если же функции f11, x2) и f21, х2) нелинейны, то кривые, соответствующие уравнениям, могут пересекаться и вне начала координат. Система имеет в этом случае, кроме ре-шения х1, =х2 = 0, и другие решения. В этом случае, кроме регулируемого режима, соответствующего началу координат, в системе возможны и иные положения равновесия (рис.1, б), и характер движения в системе зависит от величины отклонения от начала координат, вызванного возмущением.
Рис.1 Графики, соответствующие уравнениям для линейной (а) и нелинейной (б) систем
В рассматриваемом нелинейном случае особые точки могут быть лишь тех же типов, что и в линейной системе (фокусы, узлы и седла). Чтобы в нелинейном случае определить тип особой точки, надо составить соответствующее этой особой точке уравнение линейного приближения, разложив в окрестности этой точки в ряды правые части уравнений и сохранив затем в этих рядах только линейные члены. Эта операция эквивалентна «локальной» линеаризации системы вблизи особой точки.
На рис.2, а в качестве примера показан фазовый портрет системы для случая, когда кривые f11, x2) = 0 и f21, х2) = 0 пересекаются в двух точках. Кроме начала координат, где находится особая точка -- аттрактор -- устойчивый фокус, они пересекаются ещё в одной точке -- неустойчивом узле, где располагается седло. Жирной линией показана траектория, проходящая через седло и выделяющая область притяжения устойчивого равновесного режима, то есть аттрактора типа «устойчивый фокус», расположенного в начале координат (эта область заштрихована на рисунке).
Рис.2. Фазовые портреты нелинейных систем: а -- с устойчивым фокусом и седлом, б -- с устойчивым фокусом и предельным циклом. В обоих случаях имеются заштрихованные области устойчивости
До тех пор, пока изображающая точка на фазовой плоскости рис. 2, а находится внутри заштрихованной области, с течением времени фазовые траектории системы будут стремиться к началу координат, и по отношению к таким начальным состояниям система является устойчивой. Если же в результате возмущения изображающая точка окажется вне заштрихованной области, то исходящая из этой точки фазовая траектория уходит в бесконечность, и по отношению к такому возмущению система неустойчива. Заштрихованную область притяжения особой точки, расположенной в начале координат, поэтому можно назвать областью устойчивости системы. Фазовый портрет, показанный на рис. 2, а, так же, как и фазовый портрет линейной системы, не содержит замкнутых фазовых траекторий. Между тем в нелинейных системах, как в том случае, когда имеется одна особая точка, так и в случае нескольких особых точек, могут содержаться замкнутые траектории.
На рис.2, б показан пример системы, имеющей только одну особую точку в начале координат (устойчивый фокус) и одну замкнутую траекторию, охватывающую начало координат. Фазовые траектории не могут пересекаться где-либо вне особой точки, и поэтому замкнутая траектория (ее называют предельным циклом) отделяет область притяжения особой точки -- заштрихованную область устойчивости системы от «внешней» части фазовой плоскости, где система неустойчива. Внутри предельного цикла фазовые траектории «сматываются» с него и «наматываются» на начало координат. Снаружи фазовые траектории «разматываются» с предельного цикла, и по любой фазовой траектории изображающая точка уходит в бесконечность. Сам предельный цикл соответствует незатухающим колебаниям, но в данном случае они неустойчивы, поэтому такой предельный цикл называется неустойчивым предельным циклом. Достаточно сколь угодно малого возмущения, чтобы изображающая точка, сойдя с предельного цикла, более уже не возвращалась на него, а перемещалась бы по соответствующей траектории к началу координат или в бесконечность. Незатухающие колебания в такой системе реально не наблюдаются, а роль предельного цикла и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.