На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Разработка структурной схемы системы связи, предназначенной для передачи данных для заданного вида модуляции. Расчет вероятности ошибки на выходе приемника. Пропускная способность двоичного канала связи. Помехоустойчивое и статистическое кодирование.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 26.11.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Курсовая работа

По дисциплине: «Теория электрической связи»

Содержание:

    Задание и исходные данные на курсовую работу
    Исходные данные к курсовой работе
    1. Структурная схема системы связи
    2. Выбор схемы приемника
    3. Расчет вероятности ошибки на выходе приемника
    4. Сравнение выбранной схемы приемника с оптимальным приемником
    5. Передача аналоговых сигналов методом ИКМ
    6. Помехоустойчивое кодирование
    7. Статистическое кодирование
    8. Пропускная способность двоичного канала связи
    Заключение
    Литература
    Задание и исходные данные на курсовую работу
    Разработать структурную схему системы связи, предназначенной для передачи данных и передачи аналоговых сигналов методом ИКМ для заданного вида модуляции и способа приема сигналов. Рассчитать основные параметры системы связи. Указать и обосновать пути совершенствования разработанной системы связи.
    Исходные данные к курсовой работе

    Вариант: 03
    Способ модуляции: ДЧМ
    Способ приема: НЕКОГЕРЕНТНЫЙ
    Мощность сигнала на входе демодулятора приемника РС= 2,8 мВт.
    Длительность элементарной посылки Т=5,0 мкс.
    Помеха - белый шум с гауссовским законом распределения.
    Спектральная плотность мощности помехи N0 =0,001мкВт/Гц.
    Вероятность передачи сигнала 1 р(1)= 0,15
    Число уровней квантования N= 128
    Пик-фактор аналогового сигнала П= 2,9
    1. Структурная схема системы связи

Совокупность технических средств, для передачи сообщений от источника к потребителю называется системой связи. Любая система передачи сообщений включает в себя:
источник сообщений;
устройство преобразования передаваемых сигналов;
линия связи;
устройство преобразования принимаемых сигналов;
получатель сообщений;
На рисунке 1.1 приведена структурная схема системы связи.
ИНС - источник непрерывных сообщений.
АЦП (ИКМ) аналого-цифровой преобразователь - сообщение поступает от источника непрерывных сообщений на вход АЦП и помощью импульсно-кодовой модуляции выполняется дискретизация во времени , квантование по уровню и кодирование квантованных отсчетов.
Кл.1 - служит для поочередного подключения источника непрерывных сообщений и источника дискретных сообщений (Data).
Кодер статистический - преобразует дискретное сообщение в последовательность кодовых символов (уменьшает избыточность исходной последовательности в зависимости от вероятности появления кодовых комбинаций, таким образом увеличивает производительность (пропускную способность) канала связи) и передает их дальше помехоустойчивый кодер.
Кодер ПУ - помехоустойчивый кодер - преобразует дискретное сообщение в последовательность кодовых символов (вводит избыточность таким образом, что бы исправлять ошибки) и передает их в устройство передающего сообщения (УПС - модулятор).
УПС - модулятор - преобразует сигналы таким образом, чтобы согласовать их характеристики с характеристиками канала связи.
Линия связи - служит для передачи сигнала. При передаче сигнал искажается, и сообщение воспроизводится с ошибкой.
УПС демодулятор - сигнал демодулируется, т.е. восстанавливается первичная последовательность кодовых символов.
Декодер ПУ - помехоустойчивый декодер - преобразует последовательность кодовых символов в дискретное сообщение (находит и исправляет ошибку).
Декодер статистический - преобразует последовательность кодовых символов в исходное дискретное сообщение (преобразует неравномерную последовательность комбинаций на основе вероятностей их появления в равномерную исходную последовательность).
Кл.2 - служит для поочередного подключения ПНС и ПДС (Data).
ЦАП - дискретное сообщение с помощью ИКМ преобразуется в непрерывное сообщение и передается получателю непрерывных сообщений ПНС. В состав ЦАП входит детектирующее устройство, предназначенное для преобразования кодовых комбинаций в квантованную последовательность отсчетов и сглаживающий фильтр, восстанавливающий непрерывное сообщение по квантованным значениям и восстановленное непрерывное сообщение поступает потребителю.
ПНС - получатель непрерывных сообщений.
Data - источник (получатель) дискретных сообщений (данных).
ИП - источник помех. При передаче по линии связи в передаваемый сигнал примешивается различный шум.
Непрерывное сообщение от источника поступает на АЦП - аналого-цифровой преобразователь. Преобразование происходит в результате следующих операций: сначала непрерывное сообщение дискретизируется по времени через интервалы времени t, полученные отсчеты мгновенных значений квантуются, получившаяся последовательность квантованных значений передаваемого сообщения представляется посредством кодирования в виде последовательных m-ичных кодовых комбинаций. Такое преобразование называется импульсно-кодовой модуляцией. Далее полученный с выхода АЦП сигнал поступает на вход статистического кодера. Статистический кодер на основании вероятностей появления сигнала «1» р(1) и сигнала «0» р(0) и соответственно их комбинаций кодирует исходное дискретное сообщение в неравномерный код, наименьшую длину в котором имеет наиболее часто встречающиеся комбинации исходной последовательности. После этого дискретная последовательность поступает на помехоустойчивый кодер. Помехоустойчивый кодер вводит избыточность таким образом, чтобы исправлять ошибки, возникающие в канале связи. После помехозащитного кодера преобразованный сигнал поступает на модулятор, который преобразует сигналы таким образом, чтобы согласовать их характеристики с характеристиками канала связи. Полученные импульсы поступают в линию связи.
На приемной стороне системы связи последовательность импульсов поступает на демодулятор, где происходит демодуляция и регенерация, далее сигнал поступает на помехоустойчивый декодер, который находит и исправляет ошибку, которую допустил демодулятор. После этого сигнал подается на статистический декодер, который преобразует неравномерную последовательность в исходную равномерную последовательность дискретного сигнала. Далее сигнал поступает на ЦАП - цифро-аналоговый преобразователь, где происходит обратное преобразование- восстановление аналогового сигнала из принятых импульсов - кодовых комбинаций. В состав ЦАП входит детектирующее устройство, предназначенное для преобразования кодовых комбинаций в квантованную последовательность отсчетов и сглаживающий фильтр, восстанавливающий непрерывное сообщение по квантованным значениям и восстановленное непрерывное сообщение поступает потребителю.

2. Выбор схемы приемника

Сигнал на входе приемника представляет собой сложное колебание, в котором для передачи информации используется изменение значения частоты сигнала. При некогерентной обработке высокочастотных сигналов (обработке по огибающей) снижаются требования к точности установления границ посылок элементарных канальных сигналов длительностью Т. Все же для реализации оптимальной схемы средняя частота заполнения сигналов должна быть известна с высокой точностью. При приеме сигналов двоичной ЧМ распространена схема, изображенная на рисунке 2.1.
S1(t)=A cos 1t и S0(t)= A cos 0t
Правило решения для такого приемника
S1(t) - S0(t)>0 то S1
Рисунок 2.1 Схема неоптимального некогерентного приемника ЧМ сигналов
Здесь:
ПФ - разделительные полосовые фильтры, пропускающие без существенных искажений соответственно сигналы S1(t), S0(t).
ЧД - частотный детектор. Разностный сигнал двух детекторов подвергается фильтрации в ФНЧ, а результат для выбора сравнивается с нулевым порогом.
Вид сигнала при ЧМ показан на рисунке 2.2.
Спектр сигнала при ЧМ изображен на рисунке 2.3

Рисунок 2.3 Спектры сигналов ЧМ при различных индексах модуляции М

3. Расчет вероятности ошибки на выходе приемника

Вычислим мощность шума на выходе приемника по формуле:

, где

полоса пропускания приемника для ДЧМ;

где T - длительность сигнала;

Отношение мощности сигнала к мощности шума (h2):

; ,

где PС - мощность приходящего сигнала;

Для расчёта вероятности ошибки на выходе приёмника воспользуемся формулой:

Построим зависимость вероятности ошибки от отношения мощности сигнала к мощности шума (h). Результаты расчетов сведены в таблицу 3.1 График зависимости Рош от h2, изображен на рисунке 3.1

Таблица №3.1

РС мВт
0
1
2
2,8
3
4
5
6
10
h2
0
1
2
2,8
3
4
5
6
10
h
0
1
1,414
1,67
1,732
2
2,236
2,449
3,1623
РОШ
0,500000
0,303265
0,183940
0,123298
0,111565
0,067668
0,041042
0,024894
0,003369

4. Сравнение выбранной схемы приемника с оптимальным приемником

Решая вопрос о помехоустойчивости системы связи следует вначале остановиться на выборе критерия помехоустойчивости. Таких приборов может быть предложено достаточно много: минимума вероятности ошибочного приёма, минимума среднего риска или среднеквадратичного отклонения от передаваемого сообщения и т.д. Эта задача усложняется, если рассматривать возможность безошибочного распознавания множества символов. Поэтому рассмотрим наиболее простой (но и наиболее общий для любого числа символов) случай распознавания бинарных сигналов, а для оценки качества - предложенный В.А. Котельниковым, критерий идеального наблюдателя, который обеспечивает минимум вероятности ошибочного приёма.

Если имеются два сигнала S0 и S1 поражённых аддитивной помехой n(t), то напряжение на выход приёмника Z(t) = S(t) + n(t), где S(t) может принимать два значения.

Графически области условной вероятности событий S0 и S1 будут иметь вид:

Рисунок 4.1. - Условная вероятность.
где W(S0/Z) и W(S1/Z)- условные плотности вероятности появления сигналов “0” и “1” соответственно, при наличии смеси: сигнал + шум.
S0 и S1 - соответственно ожидаемые (или точно известные) значения сигнала “1” и “0”.
Вероятность события P(S) = ? W(S/Z)dt. Тогда для нормального закона распределения плотности условных вероятностей событий будем иметь:
где G - среднеквадратичное значение уровня шума. Найдём совместное решение этих уравнений в виде отношений правдоподобия:
взяв натуральные логарифмы от числителя и знаменателя:
Это выражение - наиболее классический алгоритм решения задачи оптимального приёма, соответствующая ему функциональная схема носит название идеального приёмника Котельникова.
Рисунок 4.2. - Идеальный приёмник Котельникова.
На рисунке 4.2. обозначены:
НЕ - инвертор (вычитающее устройство)
КВ - квадратор
? - интегратор
РУ - решающее устройство
т.о. оптимальный приёмник для разделения бинарных сигналов состоит из двух одинаковых ветвей, на которые заводятся ожидаемые (или известные) значения уровней сигналов “0” и “1” и решающее устройство перебрасывается в сторону большего значения среднего уровня мощности в той или иной ветви.
Но решение задачи возможно и другими способами:
Пологая (минимум ошибки) и раскрывая скобки в подынтегральных выражениях (смотри формулу выше) получим:
где Е1 = S12 - энергия сигнала “1”
Е0 = S02 - энергия сигнала “0”
В этом выражении решение оптимального приёма осуществляется за счёт перемножения смеси входного сигнала на известную функцию S0(t) и S1(t) с последующим накоплением (интегрированием). Такой способ приёма (по виду математической обработки) носит название корреляционного. Соответствующая сема на рисунке 4.3.
Рисунок 4.3.
Выражение представленное выше может быть ещё более упрощено, если ввести понятие разности сигналов S?(t) = S1 - S0 тогда
где - пороговый уровень различения.
Тогда функциональная схема одноканального оптимального приёмника бинарных сигналов будет иметь вид Рисунок 4.4.
Рисунок 4.4.
Решение задачи в пользу сигнала 1 будет в том случае, если сигнал на выходе интегратора > л.
Обратим внимание, что функция корреляции смеси сигнала с полезной информацией может быть получена, когда в точке приёма точно известен принимаемый сигнал. Если последнее условие трудно осуществить, то можно осуществить необходимую значимость путём приёма исходного сигнала Z(t) на согласованный фильтр, переходная характеристика которого
.
Таким образом, схема рисунок 4.4. для не полностью известного сигнала в точке приёма будет рисунок 4.5.
Рисунок 4.5.
Следует отметить, что задачей согласованного фильтра является не восстановление формы сигнала искаженной шумом, а получение одного отсчета, по которому можно было бы судить о присутствии или отсутствии на входе фильтра сигнала известной формы.
Сигналы «0» и «1» равны по амплитуде, но отличаются по частоте, при этом спектральные линии полезной информации различаются на /2 (выполняется условие ортогональности) - S1 и SO комплексно сопряжены.


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.