На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Развитие элементной базы основано на потребностях СМЭ, достижениях физики, технологии, производства. Микроэлектроника базируется на интеграции дискретных элементов электронной техники, а каждый элемент схемы формируется в полупроводниковом кристалле.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 09.01.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


11
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
"ОСНОВНЫЕ ЭТАПЫ И НАПРАВЛЕНИЯ РАЗВИТИЯ ЭЛЕМЕНТНОЙ БАЗЫ РЭС И УСТРОЙСТВ ФУНКЦИОНАЛЬНОЙ МИКРОЭЛЕКТРОНИКИ"
МИНСК, 2009
Развитие элементной базы РЭА, в том числе и РЭС прошло четыре этапа, которые в основном связаны с развитием элементной базы. Обычно говорят о четырех поколениях РЭА:
первое
(1915-1955 гг.)
-
создание РЭА на основе электровакуумных приборов и дискретных ЭРЭ;
второе
(1955-1965 гг.)
-
использование дискретных транзисторов и миниатюрных ЭРЭ;
третье
(1965 - 1980 гг.)
-
применение ИС и микроминиатюрных дискретных ЭРЭ;
четвертое
(с 1980 г)
-
комплексное использование ЭРЭ, БИС и СБИС, УФЭ и микропроцессорных комплектов.
Развитие элементной базы определяется потребностями СМЭ и основано на достижениях физики, технологии и производства. Особенно быстро она стала развиваться с начала 60-х гг., когда достижения физики создали основу для появления микроэлектроники. Это привело к формированию в конструкции и технологии самостоятельного направления - конструирования и технологии радиоаппаратуры.
Четвертый этап продолжается и в настоящее время. Существуют и другие классификации, особенно в отдельных направлениях РЭА.
Современная микроэлектроника базируется на интеграции дискретных элементов электронной техники, при которой каждый элемент схемы формируется отдельно в полупроводниковом кристалле. При этом в основе создания, ИМС лежит принцип элементной (технологической) интеграции, сопровождающейся микроминиатюризацией элементов (активных и пассивных) микросхемы. В ИМС можно выделить области, представляющие собой активные (диоды, транзисторы) и пассивные (резисторы, конденсаторы, катушки индуктивности) элементы. В интегральной микроэлектронике сохраняется главный принцип дискретной электроники, основанной на разработке электрической схемы по законам теории цепей. Этот принцип неизбежно связан с ростом числа элементов микросхемы, и межэлементных соединений по мере усложнения выполняемых ею функций.
Повышение степени интеграции микросхем и связанное с. этим уменьшение размеров элементов имеет определенные пределы. Интеграция свыше нескольких сотен тысяч элементов (в отдельных случаях и миллионов) на одном кристалле оказывается экономически нецелесообразной и технологически трудно выполнимой.
Сложными становятся проблемы топологии и теплоотвода. Поэтому в отдаленной перспективе интегральная микроэлектроника уже не будет полностью удовлетворять разработчиков сложной радиоэлектронной аппаратуры.
Функциональная микроэлектроника предполагает принципиально новый подход, позволяющий реализовать определенную функцию аппаратуры без применения стандартных базовых элементов, основываясь непосредственно на физических явлениях в твердом теле. В этом случае локальному объекту твердого тела придаются такие свойства, которые требуются для выполнения данной функции, и промежуточный этап представления желаемой функции в виде эквивалентной электрической схемы не требуется. Функциональные микросхемы могут выполняться не только на основе полупроводников, но и на основе таких материалов, как сверхпроводники, сегнетоэлектрики, материалы с. фотопроводящими свойствами и др. Для переработки информации можно использовать явления, не связанные с электропроводностью (например, оптические и магнитные явления в диэлектриках, закономерности распространения ультразвука и т.д.).
Таким образом, функциональная микроэлектроника охватывает вопросы получения специальных сред с наперед заданными свойствами и создания различных электронных устройств методом физической интеграции, т.е. использования таких физических принципов и явлений, реализация которых позволяет получить приборы со сложным схемотехническим или системотехническим функциональным назначением.
В функциональной микроэлектронике начинают использовать (Рисунок 1):
Оптические явления (когерентная и некогорентная оптика, нелинейная оптика, электрооптика, магнитооптика). Их свойства, связанные со свойствами светового потока, следующие:
зарядовая нейтральность, однонаправленность, отсутствие гальванических связей и электрических контактов;
двухмерность светового потока, а следовательно, возможность многоканальной обработки информации;
высокая несущая частота и, следовательно, большая полоса пропускания каналов обработки информации.
Эти особенности стали основой интенсивно развивающегося направления функциональной микроэлектроники - оптоэлектроники.
Физические явления, связанные с взаимодействием потока электронов с акустическими волнами в твердом теле. Такие явления, как генерация и усиление акустических воли потоком электронов, движущихся со сверхзвуковыми скоростями, обусловили появление нового направления функциональной микроэлектроники - акустоэлектроники. Особенность этих явлений заключается в малой скорости распространения акустических волн (1.105см/с) в отличие от электромагнитных волн (3.1010 см/с), что позволяет реализовать миниатюрные линии задержки, фильтры с заданными частотными свойствами, усилители СВЧ и др.
Преимущество этого направления состоит в том, что реализация заданной функции обеспечивается лишь выбором конфигурации устройства.
Новые магнитные материалы (слабые ферромагнетики и магнитные полупроводники), появление которых привело к созданию нового направления - магнетоэлектроники. Отличительной особенностью слабых ферромагнетиков является малая по сравнению с классическими магнитными материалами намагниченность насыщения. Это дает возможность управлять движением магнитных доменов, называемых пузырями, в двух и трех измерениях слабыми магнитными полями и осуществлять тем самым функции хранения, перемещения и обработки больших объемов информации.
Характерные размеры "пузырей", составлявших примерно 1 мкм, позволяют достичь, высокой плотности записи информации (1.108 бит/см2). Большое преимущество таких систем состоит в том, что хранение информации осуществляется без питания, а перемещение "пузырей" - малым рассеянием мощности. Ряд новых материалов - магнитных полупроводников, обладающих свойствами магнетиков и полупроводников, - позволяет создавать приборы с большой функциональной гибкостью.
Покоящиеся и движущиеся электрические неоднородности (домены и шнуры) в однородных полупроводниках. Их исследование стимулировало создание функциональных интегральных микросхем.
Так как в данном случае используется однородный материал, то реализация заданной функции может быть достигнута выбором соответствующей конфигурации устройства. Высокие скорости движения неоднородностей электрического поля (1.107 см/с) обусловливают высокое быстродействие (меньше 1.10-9 с), а также генерацию и усиление в диапазоне СВЧ.
Явления, связанные с изменением структуры конденсированных тел на молекулярном уровне. Они привели к возникновению нового направления - квантовой или молекулярной микроэлектроники. К этому направлению относятся фазовые переходы в твердых телах и жидких кристаллах, сопровождающихся резкими изменениями электрических, оптических и магнитных свойств. Обусловленная этим высокая чувствительность к внешним воздействиям позволяет легко, осуществлять ряд операций по управлению и преобразованию потоков информации в различных функциональных системах.
Интересными материалами с еще не вполне раскрытыми, перспективами использования их в микроэлектронике являются органические полупроводники.
Микроэлектронные устройства с использованием доменов обладают высокими функциональными возможностями.
Элементы на основе эффекта Ганна. Помимо генераторов и усилителей СВЧ они позволяют создавать такие функциональные устройства, как импульсно-кодовые модуляторы, компараторы, аналого-цифровые преобразователи, нейристорные линии задержки, полный ряд логических элементов, генераторы колебаний сложной формы, регистры сдвига и запоминающие устройства (ЗУ). На основе этих элементов могут быть созданы сверхбыстродействующие микросхемы (теоретически до 10-12 с), превосходящие по быстродействию лучшие кремниевые микросхемы, по крайней мере, на порядок при том же уровне рассеиваемой мощности.
Малогабаритные СВЧ-генераторы на диодах Ганна уже миновали стадию лабораторных разработок. Они обладают низким уровнем шумов (сравнимым с клистронами) и мощностью излучения, достаточной для использования в радиолокационных устройствах в диапазоне частот 1 - 80 ГГц. Такие: диоды в пролет и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.