Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Конструкционные проблемы теплового режима металлических пленок бескорпусных полупроводниковых интегральных микросхем: диаграмма нагрева и расчет надежности эскизного проекта. Интенсивность отказов конструкции и структуры проводника металлизации.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 13.06.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
КАФЕДРА РЭС
РЕФЕРАТ
НА ТЕМУ:
«Оценка теплового режима ИМС. Расчет надежности полупроводниковых ИМС по внезапным отказам»
МИНСК, 2009
Оценка теплового режима ИМС

Конструкция ИМС должна быть такой, чтобы теплота, выделяющаяся при ее функционировании, не приводила в наиболее неблагоприятных условиях эксплуатации к отказам элементов в результате перегрева. К тепловыделяющим элементам следует отнести, прежде всего, резисторы, активные элементы и компоненты. Мощности, рассеиваемые конденсаторами и индуктивностями, невелики. Пленочная коммутация ИМС благодаря малому электрическому сопротивлению и высокой теплопроводности металлических пленок способствует отводу теплоты от наиболее нагретых элементов и выравниванию температуры платы ГИС или кристаллов полупроводниковых ИМС.
Введем следующие понятия, необходимые для осуществления тепловых расчетов.
Перегрев элемента или компонента ИМС (И, °С), -- разность между их температурой и средней температурой поверхности корпуса. Максимально допустимая температура Tmax доп -- максимальная температура элемента или компонента ИМС, при которой обеспечиваются требования к их надежности. Удельная мощность рассеяния (Р0, Вт/°С) -- плотность теплового потока от элемента ИМС, кристалла или платы ИМС. Внутреннее тепловое сопротивление элемента, кристалла или компонента ИМС (Rt вн, °С/Вт) -- тепловое сопротивление самого элемента (кристалла, компонента) и тепловое сопротивление контакта между элементом (компонентом) и платой (кристаллом и корпусом) с учетом теплового сопротивления клеевой прослойки.
Рис. 1. Тепловой поток от источника теплоты при различных соотношениях между размерами тепловыделяющих элементов и толщиной подложки: 1 -- теплоотвод; 2 -- слой клея или компаунда; 3 -- подложка; 4 -- тепловыделяющий элемент
В случае, когда весь тепловой поток сосредоточен под элементом ИМС и направлен к подложке (рис. 1), при соотношении l, b>>h тепловой поток плоскопараллелен и тепловое сопротивление
(1)
где RT -- тепловое сопротивление; и -- коэффициенты теплопроводности материала подложки и клея, Вт/(м*°С); hП и hK -- их толщины; b и l -- размеры контакта тепловыделяющего элемента с подложкой; h = hП + hK.
При уменьшении размеров источника тепла тепловой поток становится расходящимся (рис. 1), эффективность теплоотвода увеличивается и соответственно уменьшается тепловое сопротивление. Этот факт учитывается функцией :
(2)
где q = l/2h, r = b/2h, l и b -- линейные размеры плоского источника теплоты.
Для корпусов, значения функции даны на рис. 2.
Рис. 2. Значение функции :
а -- при q=0+0,1; б -- при q=0,1+0,4; в -- при q=0,4+1,0; г -- при q=1,0+4,0
Расчет надежности полупроводниковых ИМС по
внезапным отказам

Для расчета надежности полупроводниковых ИМС разработан ряд методик на основе статистического и физического методов.
Статистические методы используют для ориентировочного расчета надежности на этапе эскизного проектирования ИМС, а физические -- для окончательного расчета на этапе разработки рабочей документации.
Рассмотрим наиболее распространенные методики расчета для этих двух методов.
Статистический метод. В основу методики расчета надежности полупроводниковых ИМС на основе статистического метода положены те же допущения, что и при расчете гибридных ИМС. При этом учитывается, что резисторы и конденсаторы формируются на базе транзисторной структуры, т.е. с помощью прямых и обратно смещенных p-n-переходов. Поэтому интенсивность их отказов принимается такой же, что и у диодов. В качестве компонентов ненадежности полупроводниковых ИМС при данном расчете используют элементы структуры и конструкции ИМС (рис. 3): транзисторные 1 и диодные 2 p-n-переходы, внутрисхемные соединения 3 и выводы корпуса 4.
Интенсивность отказов корпусных полупроводниковых ИМС рассчитывают по выражению
(3)
где -- число условных транзисторных переходов; -- число условных диодных переходов, равное общему числу диодов, резисторов и конденсаторов; -- число внешних выводов; , -- коэффициенты режима работы транзисторных и диодных переходов; , и -- интенсивности отказов транзисторных переходов, диодных переходов и соединений соответственно (для нормальных условий); -- коэффициент вибрации.
При расчете бескорпусных полупроводниковых ИМС выражение (3) упрощается, так как отсутствуют соединения с выводами корпуса и = 0. Рекомендуемые для расчетов средние статистические значения интенсивностей отказов компонентов ненадежности следующие:
Рис. 4. Зависимости поправочных коэффициентов от температуры и коэффициента нагрузки ka для пленочных резисторов (a), транзисторов (б), диодов (в) и пленочных конденсаторов (г)
Рекомендуемые значения коэффициентов режима работы для различной температуры окружающей среды при расчете по данной методике приведены в табл. 1.
Значение вероятности безотказной работы Р (t) определяют обычным путем.
Рис. 5. Конструкция полупроводниковой биполярной ИМС
Следует отметить, что полупроводниковые ИМС общего применения универсальны и предназначены для многоцелевого использования. В конкретном схемном включении часть цепей и внешних выводов ИМС может не использоваться и, следовательно, они не будут влиять на надежность всего устройства. Поэтому расчет по выражению (27.1) необходимо производить с учетом конкретного включения ИМС. Это часто имеет место при использовании бескорпусных полупроводниковых ИМС в МСБ. Следовательно, одна и та же ИМС может иметь различные уровни надежности.
Табл. 1 Коэффициенты режима работы элементов полупроводниковых
ИМС
Коэффициент режима работы
Температура, °С
20
30
40
50
60
70
80
1,0
1,35
1,85
2,60
3,60
4,90
6,20
1,0
1,27
1,68
2,0
2,60
3,40
4,1 и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.