Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.
Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.
Результат поиска
Наименование:
Курсовик Назначение системы связи - передача сообщения из одной точки в другую через канал связи. Формирование сигнала. Аналого-цифровой и цифро-аналоговый преобразователь. Строение модема. Воздействие шумов и помех. Сравнение входного и выходного сигналов.
Информация:
Тип работы: Курсовик.
Предмет: Схемотехника.
Добавлен: 21.01.2009.
Год: 2009.
Уникальность по antiplagiat.ru: < 30%
Описание (план):
28 СОДЕРЖАНИЕ
Задание2 Введение3
Формирование сигнала 5 Аналого-цифровой преобразователь. 9 Модем 16 Воздействие шумов и помех 19 Цифро-аналоговый преобразователь 22 Сравнение сигналов 23
Литература27
Задание
Вариант
Входной сигнал, X,
(без случайной составляющей)
Точность, %
Интерфейс модема
Тип модуляции
18
6/12
параллельный
ФМ
Введение
Назначением системы связи является передача сообщения из одной точки в другую через канал связи, обладающий определенными свойствами (в частности, пропускающий лишь некоторую полосу частот). Для решения этой задачи приходится осуществлять целый ряд преобразований.
Прежде всего исходное сообщение подвергается первичному кодированию (кодированию источника), цель которого - преобразование аналогового сообщения в цифровое либо сжатие информации. Следующий этап - помехоустойчивое кодирование. Здесь в сообщение вносится избыточность с целью обеспечить возможность исправления на приемной стороне всех или некоторых возникших в процессе передачи ошибок. После применения помехоустойчивого кода сообщение поступает в модулятор, преобразующий цифровое сообщение в аналоговый модулированный сигнал, занимающий заданную полосу частот.
В процессе прохождения модулированного сигнала через канал связи сигнал подвергается воздействию шумов и помех. Искаженный сигнал поступает на вход приемника.
Структура приемной части является зеркальным отражением структуры передатчика - сигнал проходит через блоки, в обратном порядке осуществляющие преобразования, обратные по отношению к тем, что производились в передатчике.
Прежде всего сигнал подвергается демодуляции, в процессе которой аналоговый модулированный сигнал преобразуется в цифровое сообщение. Далее производится декодирование помехоустойчивого кода, при этом благодаря корректирующим свойствам кода возможно исправление части (или всех) ошибок, возникших в процессе передачи. После исправления ошибок следует декодирование источника - восстановление исходного сообщения.
Можно выделить следующие группы функций:
· функции моделирования и анализа сигналов;
· функции кодирования/декодиро ания источника;
· функции помехоустойчивого кодирования/декодиро ания;
· функции модуляции/демодуляции;
· функции моделирования каналов связи.
Кроме этих групп, непосредственно связанных со структурной схемой телекоммуникационной системы, имеется еще несколько групп общих и служебных функций:
· функции расчета специальных фильтров;
· функции вычислений в конечных полях (полях Галуа) ;
· вспомогательные функции.
Формирование сигнала
Схема генерации входного сигнала изображена на рисунке 1.
Рисунок 1 - Входной сигнал.
Согласно задания, мы должны получить треугольнообразный сигнал вида:
Таким образом, амплитуда сигнала равна 4, т.е. кривая сигнала равномерно возрастает (коэффициент 0,3) на величину равную 4, а затем равномерно падает (коэффициент - 0,6) на эту же величину. Определим период сигнала:
Настройки блока Constant (определяет период) показаны на рисунке 2.
Рисунок 2 - Настройка блока Constant.
Блок Constant1 определяет коэффициент участка возрастания сигнала, его "constant value" равно 0,3. Блок Constant2 определяет коэффициент участка убывания сигнала, его "constant value" равно - 0,6.
Блок Switch реализует переключение между участком возрастания и убывания. Так как генерируется сигнал поочередно убывающий и возрастающий, то при условии "u2>=Threshold" Threshold должен быть равен 40/6 (диапазон участка убывания). Настройки блока Switch приведены на рисунке 3.
Рисунок 3 - Настройка блока Switch.
Для построение сигнала в диапазоне [-1; 3] необходимо использовать блок Fcn1 со значением параметра "expression", равным u+3. В результате получаем требуемый сигнал.
Рисунок 4 - График сгенерированного сигнала.
Данный сигнал можно сгенерировать, используя блок MATLAB Fcn и функцию:
function result=buildOfSignal time)
global move;
global sdvig;
if time<2
sdvig=0;
move=1;
end;
if move==2
if (time-1-sdvig) *0.3-1<3
result=(time-1-sdvig *0.3-1;
else
move=2;
sdvig=time;
%result=-0.6*(time-1 sdvig) +3;
result=3;
end;
else
if - 0.6*(time-1-sdvig) +3>-1
result=-0.6*(time-1- dvig) +3;
else
move=1;
sdvig=time;
%result=(time-1-sdvi ) *0.3-1;
result=-1;
end;
end;
Аналого-цифровой преобразователь
Схема АЦП изображена на рисунке 5.
Рисунок 5 - АЦП.
Аналого-цифровой преобразователь состоит из блоков дискретизации (Zero-Order Hold1), квантователя (Quantizer1), целочисленного преобразователя (Rounding Function1) и конвертора (Integer to Bit Converter1).
Так как АЦП составляет в том числе и блок Integer to Bit Converter1, то на АЦП должны подаваться положительные значения. Поэтому между генератором сигнала и АЦП необходимо разместить блок Fcn3 со значением expression равным u+10.
Рисунок 6 - Блок смещения сигнала в положительный диапазон.
Блоков дискретизации Zero-Order Hold1 выполняет экстраполяцию входного сигнала на интервале дискретизации. Блок фиксирует значение входного сигнала в начале интервала дискретизации и поддерживает на выходе это значение до окончания интервала дискретизации. Затем входной сигнал изменяется скачком до величины входного сигнала на следующем шаге дискретизации. Параметр блока simple time настраивает такт дискретизации.
Рассчитаем такт дискретизации.
- верхняя граничная частота в спектре сигнала. Для нахождения этой величины строим спектральную характеристику, используя блок Averaging Power Spectral Density со следующими настройками:
Рисунок 7 - Настройка блока Averaging Power Spectral Density.
В результате получим график, приведенный на рисунке 8:
Рисунок 8 - Спектр сигнала.
На графике отчетливо видно две гармоники при щ=0,06 рад/с и при щ=0,11 рад/с. Расчет периода дискретизации ведется по второй гармонике.
Таким образом, блок дискретизации Zero-Order Hold1 будет иметь следующие настройки:
Рисунок 9 - Настройки блока Zero-Order Hold1.
Следующим элементом в АЦП является квантователь. Он обеспечивает квантование с одинаковым шагом по уровню. Рассчитаем значения его параметров.
Таким образом, настройки блока квантования Quantizer1 будут следующие:
Рисунок 10 - Настройки блока Quantizer1.
Блок Rounding Function1 является простой математической функцией округления значения до ближайшего целого. Этот блок - подготовительное звено перед конвертированием квантованного сигнала в биты.
Блок Integer to Bit Converter1 выполняет преобразование целочисленных значений в биты. Настройки этого блока приведены на рисунке 11:
Рисунок 11 - Настройки блока Integer to Bit Converter1.
Параметр number of bits per integer (количество бит на число) определяется разрядностью АЦП (6) плюс 1.
При этом осциллограмма Scope1 покажет, что 4 битовых канала фактически не используются. Вероятнее всего это связано с несоответствием диапазона сигнала на входе АЦП и его разрядности, т.е. если используется АЦП 7 бит, то максимальное значение сигнала, на него подаваемое должно быть 128 (27) иначе его разрядность не используется при округлении к целым числам, т. о. сигнал, подаваемый на АЦП должен быть увеличен до этой величины, а после ЦАП на столько же уменьшен.
Для реализации увеличения и уменьшения сигнала используются блоки Gain (для увеличения) и Gain1 (для уменьшения) с коэффициентами 8 и 1/8 соответственно.
Блоки Gain выполняют умножение входного сигнала на постоянный коэффициент.
Параметры:
Gain - Коэффициент усиления.
Multiplication - Способ выполнения операции. Может принимать значения (из списка):
- Element-wise K*u- Поэлементный.
- Matrix K*u - Матричный. Коэффициент усиления является левосторонним операндом.
- Matrix u*K - Матричный. Коэффициент усиления является правосторонним операндом.
Saturate on integer overflow (флажок) - Подавлять переполнение целого. При установленном флажке ограничение сигналов целого типа выполняется корректно.
Параметр блока Gain может быть положительным или отрицательным числом, как больше, так и меньше 1. Коэффициент усиления можно задавать в виде скаляра, матрицы или вектора, а также в виде вычисляемого выражения.
В том случае если парметр Multiplication задан как Element-wise K*u, то блок выполняет операцию умножения на заданный коэффициент скалярного сигнала или каждого элемента векторного сигнала. В противном случае блок выполняет операцию матричного умножения сигнала на коэффициент заданный матрицей.
По умолчанию коэффициент усиления является действительным числом типа double.
Для операции поэлементного усиления входной сигнал может быть скалярным, векторным или матричным любого типа, за исключением логического (boolean). Элементы вектора должны иметь одинаковый тип сигнала. Выходной сигнал блока будет иметь тот же самый тип, что и входной сигнал. Параметр блока Gain может быть скаляром, вектором или матрицей либого типа, за исключением логического (boolean).
При вычислении выходного сигнала блок Gain использует следующие правила:
Если входной сигнал действительного типа, а коэффициент усиления комплексный, то выходной сигнал будет комплексным.
Если тип входного сигнала отличается от типа коэффициента усиления, то Simulink пытается выполнить приведение типа коэффициента усиления к типу входного сигнала. В том случае, если такое приведение невозможно, то расчет будет остановлен с выводом сообщения об ошибке. Такая ситуация может в и т.д.................