На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Обоснование структурной схемы. Электрический расчет. Выбор усилительного полупроводникового прибора. Расчет выходного фильтра. Выбор стандартных номиналов. Электрическая схема оконечного мощного каскада связного передатчика с частотной модуляцией.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 14.11.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


Министерство образования Российской Федерации
УГТУ-УПИ имени С.М. Кирова
Кафедра ВЧСРТ
группа Р-498
оценка_____



Проектирование выходного каскада связного передатчика с частотной модуляцией
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
КУРСОВОй ПРОЕКТ
по курсу: Радиопередающие устройства

201600 000000 013ПЗ
зачётная книжка №:09832013
студент:
Симонов Евгений Владимирович
руководитель:
Булатов Лев Иосифович


ЕКАТЕРИНБУРГ 2002 год
Содержание
    Введение
      1. Исходные данные и задание на проектирование
      2. Выбор, описание и обоснование структурной схемы
      3. Электрический расчёт
      3.1 Выбор усилительного полупровдникового прибора
      3.2 Расчёт коллекторной цепи
      3.3 Расчет базовой цепи
      3.4 Расчёт цепи питания
      3.5 Расчет цепи смещения
      4. Расчёт цепи согласования
      4.1 Электрический расчёт
      4.2 Конструктивный расчёт
      5. Расчёт выходного фильтра
      5.1 Электрический расчёт
      5.2 Конструктивный расчёт
      6. Выбор стандартных номиналов
      Заключение
      Библиографический список

Введение

Человечество шагнуло в третье тысячелетие и теперь стало очевидным то, что всё ускоряющийся и ускоряющийся темп жизни требует всё большей и большей скорости передачи информации, не говоря уже о том, что необходимо обеспечивать связь между отнюдь нестационарными абонентами. Летите ли вы в самолёте, едите ли вы в поезде, идёте ли вы просто пешком, но связь вам нужна и она не должна прерываться, чтобы вы быстро и своевременно могли получить нужную вам информацию и не важно в виде картинок текста, речи будет эта информация или в каком-либо другом виде, а важно то, что о проводной связи в этом случае и речи быть не может. Мало кто может похвастаться возможностью телепатически связываться с человеком или другим живым существом, хотя это самый лучший вариант связи в котором задействован весь организм нашей живой вселенной. Поэтому, хоть и более примитивную связь (Примитивную - поскольку она многим ограничена, обеспечиваясь примитивными техническими устройствами, жадно потребляющими энергию и ничего не дающими взамен кроме удовлетворения наших некоторых потребностей, причём для изготовления таких устройств зачастую требуется огромный вклад научного и инженерного труда. Надо заметить, что именно в технократическом мире достижения человечества значительны и интересны, и только иногда прилетающие наблюдатели с других планет своим присутствием подсказывают о возможных дальнейших перспективах технократического развития) но всё же вполне надёжную и приемлемую можно обеспечить при помощи радио - эту связь мы привыкли называть РАДИОСВЯЗЬ-ю.
По существу же радиосвязь представляет собой распространяющееся в пространстве электромагнитное колебание, несущее в себе информацию. Если информация заключается в амплитуде электромагнитного колебания - то говорят об амплитудной модуляции (или АМ), если же в частоте или фазе - то о частотной (ЧМ) или фазовой (ФМ) модуляции. Также для излучения (приёма) этого электромагнитного колебания в открытое пространство (из открытого пространства) необходимо такое устройство как радиопередатчик (радиоприёмник). В наше время широко используются радиостанции, т.е. устройства, сочетающие в себе и радиоприёмник и радиопередатчик и способные работать как на приём, так и на передачу в широком диапазоне частот.
Радиосвязь имеет огромное значение для современного человека и используется им почти во всех сферах его деятельности, поэтому, очень нужны специалисты по электронике и радиосвязи. Для того чтобы стать таким специалистом, необходимо для начала, приложив не мало усилий получить хорошее техническое образование, которое могут дать компетентные преподаватели, например преподаватели радиотехнического факультета УГТУ-УПИ им. С.М. Кирова. А затем необходимо саморазвиваться и повышать свой профессионализм, проектируя всё более и более совершенные, «шагающие в ногу со временем» радиоустройства.
Всё это хорошо, но в нашем случае необходимо спроектировать оконечный каскад связного передатчика с частотной модуляцией, чему собственно и посвящена данная работа. Передатчики такого типа проектируются для работы на одной фиксированной частоте или в диапазоне частот. В первом случае, рабочая частота стабилизируется кварцевым резонатором, и для генерации ЧМ колебаний могут быть использованы как прямой метод управления частотой, так и косвенный. В качестве возбудителя диапазонного передатчика с ЧМ используется синтезатор сетки дискретных частот, ведомый генератор которого управляется двумя варикапами.

1. Исходные данные и задание на проектирование

Выбрать и рассчитать:

В процессе проектирования радиопередающего устройства (в нашем случае оконечного мощного каскада) обязательно нужно руководствоваться техническим заданием на проектирование, основываясь на котором необходимо выполнить следующее:
выбрать наиболее подходящую структурную схему для будущего устройства;
выбрать усилительный прибор;
выбрать схему питания усилительного прибора;
выбрать однотактной ли или двухтактной будет схема усилителя;
произвести расчёт цепи питания, цепи смещения, а также входной и выходной цепей усилительного каскада.
необходимо обеспечить согласование выходного сопротивления каскада передатчика с входным сопротивлением антенно-фидерного устройства;
выбрать тип и порядок выходного фильтра;
Рассчитать конструктивные параметры согласующего устройства и катушек индуктивности фильтра.
Вычертить:
принципиальную электрическую схему оконечного мощного каскада связного передатчика с частотной модуляцией.
Задание на проектирование №14.
В данном техническом задании необходимо спроектировать устройство (оконечный каскад связного передатчика с частотной модуляцией), удовлетворяющее следующим требованиям:
Диапазон рабочих частот F, МГц. 42 - 48
Мощность передатчика Р1, Вт. 6
Подавление внеполосных излучений, Дб. 40
Девиация частоты, кГц. 5
Относительная нестабильность частоты 10-5
Питание от сети 220В 50Гц:
Сопротивление фидера, Ом. 75

2. Выбор, описание и обоснование структурной схемы

Существует несколько способов получения частотной (ЧМ) (фазовой (ФМ)) модуляции [3, 4, 5].

Угловая модуляция может быть получена прямым способом, когда модулируется непосредственно частота автогенератора передатчика, или косвенным, когда в промежуточном каскаде передатчика производится фазовая модуляция. Структурные схемы передатчиков с этими способами модуляции приведены на рис. 2.1 и 2.2.

Рис. 2.1 Структурная схема передатчика с прямой ЧМ.

Рис. 2.2 Структурная схема передатчика с косвенной ЧМ

Другими словами, прямую частотную модуляцию осуществляют: в полупроводниковых генраторах путём изменения параметров колебатльного контура с помощью варикапов, варикондов, реактивного транзистора, нелинейной индуктивности, железоитериевого граната (на частотах от нескольких сот мегагерц до десятков гигагерц); в диодных генераторах (на тунельном диоде, ЛПД, диоде Ганна) путём изменения напряжения смещения на диоде; в транзисторных RC-генераторах путём изменения режима работы транзистора (тока коллектра, напряжения смещения на переходе эмиттер-база).

В системах косвенного получения частотной модуляции используются фазовые модуляторы (ФМ). Известны четыре наиболее распространённые структурные схемы передатчиков с ФМ: с ФМ на выходе передатчика; с ФМ в предоконечных каскадах с последующим усилением мощности сигнала ФМК; с ФМ в начальных каскадах с последующим умножением частоты и усилением мощности сигнала ФМК; с ФМ на поднесущей частоте с последующим транспонированием и усилением ФМ сигнала. Эти структурные схемы можно посмотреть в книге: «Радиопередающие устройства (проектирование радиоэлектронной аппаратуры СВЧ на интегральных схемах )»/ Под. ред. О. А. Челнокова - М.: Радио и связь, 1982. - 256 с.

Тот и другой способы получения ЧМ имеют свои недостатки и достоинства. Достоинство прямого метода - возможность получения глубокой и достаточно линейной частотной модуляции, недостаток - трудность обеспечения стабильности средней частоты колебания с ЧМ. Достоинство косвенного способа - высокая стабильность средней частоты, недостатки - неглубокая модуляция, трудность передачи низких модулирующих частот.

Возможность получения глубокой и линейной ЧМ делает предпочтительным прямой способ в радиовещательных и связных передатчиках. При этом для повышения стабильности средней частоты используют систему автоматической подстройки частоты (АПЧ) по высокостабильному кварцевому эталону. Структурная схема такого передатчика приведена на рис. 2.3.

Рис 2.3 Структурная схема ЧМ передатчика с синтезатором частоты
Для построения нашего связного передатчика воспользуемся подобной схемой, но уточним состав и количество входящих в неё блоков.
В качестве возбудителя диапазонного передатчика с ЧМ используется синтезатор сетки дискретных частот, ведомый генератор которого управляется двумя варикапами (рис.2.3). На варикап VD1 подается модулирующее напряжение U, на варикап VD2 - управляющее напряжение системы фазовой автоподстройки частоты. Разделение функций управления объясняется тем, что девиация частоты под влиянием модулирующего сигнала относительно невелика (обычно 3 - 5 КГц) в сравнении с диапазоном перестройки ведомого генератора управляющим сигналом с выхода системы фазовой автоподстройки частоты (ФАПЧ). По этой причине варикап VD1 связан с колебательным контуром ведомого автогенератора значительно слабее, чем VD2. Использование ФАПЧ в передатчике, построенном по подобной схеме, также позволяет линеаризовать статическую модуляционную характеристику. Шаг сетки частот на выходе передатчика в зависимости от его рабочего диапазона частот может быть 5; 10; 12,5; 25 кГц.
Умножители частоты включают в структуру передатчика для повышения устойчивости, но при этом из-за нелинейностей их АЧХ увеличиваются нелинейные искажения ЧМК в «n» раз, соответственно, а шаг сетки синтезатора уменьшается в «n» раз, где n - коэффициент умножения частоты.
В нашем случае, источником сигнала U является микрофон с последующим усилителем звуковой частоты (УЗЧ) Управление ГУН в этом случае также производится через два варикапа, на один из которых подаётся модулирующее напряжение U с выхода УЗЧ, а на другой варикап - управляющее напряжение системы ФАПЧ. Девиация частоты под действием модулирующего сигнала в случае связного передатчика равна 3 кГц. Ширина спектра ЧМ сигнала (полоса частот П) рассчитывается по формуле:
(2.1)

В этой формуле Fв - верхняя частота передаваемого сообщения, для речевых сообщений, т.е. Fв = 3,4 кГц (а нижняя частота спектра речевого сигнала Fн = 300 Гц); m - индекс модуляции, рассчитанный по формуле (2.2):
(2.2),
где f - девиация частоты на выходе ГУН (или передатчика, в зависимости от того хотим ли мы получить индекс модуляции на входе или на выходе передатчика соответственно), а Fв - верхняя частота спектра речевого сигнала.
На выходе ГУН, как было сказано выше, сигнал имеет небольшую девиацию частоты 3 кГц и соответственно небольшой коэффициент модуляции m 0,882, а по техническому заданию передатчик должен обеспечить девиацию частоты как минимум f = 5 кГц. Поэтому, рассчитанный по формуле (2.2) индекс модуляции, который должен иметь сигнал на выходе нашего связного передатчика оказывается равным:
Поделив полученный индекс модуляции на выходе передатчика на индекс модуляции на входе передатчика (выходе ГУН) можно определить во сколько раз необходимо произвести умножение частоты сигнала на входе передатчика для получения требуемой девиации частоты в 5кГц сигнала на выходе передатчика:
раз
Поскольку с каждым каскадом умножителей частоты умножение частоты происходит в соответствии с алгоритмом: [1] «n» [2] «n2» [3] «n3» … [k] «nk»; то с учётом того, что необходимо минимизировать число каскадов, а стандартный максимальный коэффициент умножения частоты одного каскада n = 4, то в нашем случае, число каскадов умножителей частоты получается k = 1, а коэффициент умножения частоты этого каскада n = 2. При этом девиация частоты на выходе передатчика получится f = 3000 2 6 кГц. Очевидно, что при коэффициенте умножения частоты равном 2 верхние и нижние частоты генератора сетки эталонных частот должны быть соответственно:
МГц; МГц
Подставив в формулу (2.1) численные значения входящих в неё величин, получаем, что ширина спектра сигнала на выходе связного передатчика равна:
кГц
Исходя из ширины спектра ЧМ сигнала в данном случае, выбираем шаг сетки частот на выходе передатчика равным 50 кГц. Тогда с учётом коэффициента умножения частоты шаг сетки частот ГСЭЧ должен составить 25 кГц.
Допустим, что у нас возбудитель «ПКВ - 250» у которого диапазон генерируемых частот 4…27 МГц с шагом сетки частот 100 Гц, нестабильность частоты порядка 210-7 (хотя в нашем случае, по техническому заданию достаточно обеспечить нестабильность частоты на выходе передатчика 10-5), напряжение на выходе 1 В при работе на нагрузку 75 Ом (см. [3], стр. 261, табл. 8.6). Тогда получается, что мощность на выходе ГУН порядка 10 мВт. Выходная колебательная мощность нашего связного ЧМ передатчика по техническому заданию должна быть 6 Вт, следовательно, входной сигнал передатчика необходимо по мощности усилить в 600 раз. Оконечный же мощный каскад передатчика в соответствии с расчётами, (см. раздел 3.3 РАСЧЁТ БАЗОВОЙ ЦЕПИ) может обеспечить коэффициент усиления по мощности порядка Кр 5,119. Значит, необходимо обеспечить коэффициент усиления по мощности как минимум ещё в 115…120 раз, допустим, что в 120 раз (возьмём с запасом), тогда перед оконечным каскадом необходимо поставить ещё два усилительных каскада, например, на выбранном транзисторе 2Т951А (см. раздел 3.1 ВЫБОР УСИЛИТЕЛЬОГО ПОЛУПРОВОДНИКОВОГО ПРИБОРА) c Кр равными 10 и 12 соответственно. После проведённых рассуждений, проводимых с целью обозначить необходимые составные части и объяснить назначение этих частей в структурной схеме, предлагается структурная схема связного передатчика с ЧМ, вид которой показан на рисунке 2.4:
Рис. 2.4 Структурная схема ЧМ передатчика с синтезатором частоты
Таким образом, структурная схема нашего связного ЧМ передатчика вместе с блоками уже имеющимися в схеме на рис. 3.2 своём составе дополнительно содержит:
Ш Микрофон, который обеспечивает преобразование речевого сообщения в амплитудно-модулированный входной сигнал передатчика;
Ш Усилитель звуковой частоты, который обеспечивает усиление амплитуды сигнала поступающего с микрофона на управляющий варикап;
Ш Буферный каскад, необходимый для защиты ГУН, генератора сетки эталонных частот и системы ФАПЧ от влияния на них последующих каскадов;
Ш Умножитель частоты с коэффициентом умножения частоты n = 2, необходимый для обеспечения требуемой девиации частоты на выходе связного ЧМ передатчика;
Ш Три блока (каскада) усилителей мощности с коэффициентами усиления по мощности Kp = 10, 12, 5 соответственно, причем мощный оконечный каскад с коэффициентом усиления по мощности равным 5,119 (см. раздел 3.3 РАСЧЕТ БАЗОВОЙ ЦЕПИ);
Ш Цепь согласования, обеспечивающую согласование выходного сопротивления оконечного каскада передатчика с входным сопротивлением фидера 75 Ом в заданном диапазоне частот;
Ш Фильтр нижних частот, обеспечивающий ослабление высших гармоник на 40 дБ вне рабочего диапазона частот передатчика в соответствии с техническим заданием (см. раздел 4 АСЧЁТ ВЫХОДНОГО ФИЛЬТРА).
Поскольку в данной курсовой работе необходимо спроектировать только оконечный мощный каскад связного передатчика с ЧМ, то для конкретизации, входящие в его состав блоки обведены синей пунктирной линией, и именно о них далее пойдёт речь.

3. Электрический расчёт

3.1 Выбор усилительного полупровдникового прибора

Сложность современных радиоэлектронных систем наряду со специфическими радиотехническими требованиями определяет исключительно высокие к надёжности всех её блоков, в том числе и передатчика. В то же время передатчик в большинстве систем находится в самых неблагоприятных условиях по сравнению с другими блоками: он генерирует значительную мощность, поэтому работа всех его элементов связана с большими токами, напряжениями и значительным рассеиванием тепла.

В мощных каскадах передатчиков из полупроводниковых приборов используют биполярные и полевые транзисторы. Отсутствие цепи накала у транзисторов обуславливает их немедленную готовность к работе, хотя не приводит к заметной экономии электроэнергии питания, так как затраты энергии в цепях накала современных мощных ламп составляют 4…5 % и меньше их номинальной мощности. Недостатки транзисторных передатчиков прежде всего связаны с высокой стоимостью мощных транзисторов из-за чрезвычайно сложной технологией их производства. Меньший (как правило) коэффициент усиления по мощности транзисторов (по сравнению с лампами) приводит к большему числу каскадов, т.е. к дополнительным затратам энергии и мощности, рассеиваемой внутри передатчика. Существенный разброс параметров транзисторов, их температурная зависимость, а также зависимость усилительных свойств от частоты и режима усложняют схему построения передатчиков. Биполярные транзисторы применяют от самых низких частот до, ориентировочно 10 ГГц. Верхняя рабочая частота fв в генераторных транзисторах, как правило, ограничивается его усилительными возможностями, нижняя же частота fн для биполярных транзисторов - опасностью перегрева его структуры за время протекания одного импульса тока и развитием вторичного пробоя. Но к современной связной аппаратуре предъявляются жёсткие требования к уменьшению габаритов массы и повышению технологичности.

Поскольку наш связной передатчик имеет диапазон рабочих частот от 42 до 48 МГц, и небольшую мощность порядка 6 Вт то выбор остановим на биполярном транзисторе.

Для того чтобы выбрать конкретный полупроводниковый прибор воспользуемся таблицей 1.1 в [5] (стр. 20 - 23) где находится справочная информация, необходимая для грамотного выбора транзистора. Отметим, что информация, которую содержат обычные справочники по транзисторам, не годится для осуществления правильного выбора, поскольку по ней нельзя узнать важные (определяющие) параметры транзистора в конкретном режиме, так, например важный параметр rнас (в граничном режиме).

,

где - остаточное напряжение на коллекторе транзистора в граничном режиме, Sгр - крутизна выходной характеристики транзистора в граничном режиме.

Для оконечного каскада нашего связного передатчика по мощности передатчика, по диапазону рабочих частот подходит целая линейка транзисторов: КТ966А-2, 2Т921А, 2Т951А, 2Т951А, 2Т981А с параметрами:

Тип транзистора
rнас
(rнас ВЧ), Ом
Диапазон рабочих частот, МГц
Рн, Вт
Рекомендуемый режим работы
КТ966А-2
5
4…60
10
Класс А -58 дБ
2Т921А
1,8 (3,4)
1,5…60
12,5
Линейный -30…-39дБ
2Т951В
(10)
30…80
(1,5…80)
3
2
Класс В
Линейный -27…-33дБ
2Т951А
(1,4)
30…80
(1.5…80)
25
15
Класс В
Линейный -30…-35дБ
2Т981А
0,1
30…80
50
Класс В
Как видно из выше приведённых некоторых параметров линейки транзисторов наиболее подходящий транзистор для нашего связного передатчика 2Т951А, потому что имеет достаточно большое rнас = 1,4 а также подходит по мощности (с запасом), по диапазону рабочих частот, и по рекомендуемому режиму работы.
Выбранный транзистор имеет следующие параметры:
Таблица 3.1 Параметры выбранного транзистора 2Т951А
Параметр
Пояснение
Значение
rб
Сопротивление материала базы
0,5, Ом
rэ
Стабилизирующее сопротивление в цепи эмиттера
0,2, Ом
Rуе
Сопротивление утечки эмиттерного перехода
0,1, кОм
h21э0
Коэффициент передачи по току в схеме с общим эмиттером ОЭ на постоянном токе
15…100
fт
Граничная частота передачи по току в схеме с ОЭ
150…420, МГц
Ск
Барьерная ёмкость коллекторного перехода при соответствующем напряжении Ек
60…70, пФ при Ек=28, В
Сэ
Барьерная ёмкость эмиттерного перехода при соответствующем напряжении Еэ
600, пФ при Еэ=0, В
к
Постоянная времени коллекторного перехода
20 пс при Ек=10, В
Lэ
Индуктивность вывода эмиттера транзистора
2,8…3,8, нГн
Lб
Индуктивность вывода базы транзистора
2,1…3,2, нГн
Lк
Индуктивность вывода коллектора транзистора
1,3…3,2, нГн
Eкэ доп
Предельное напряжение на коллекторе
65, В при Екб имп
Eкэ имп
Предельное значение импульсного напряжения на коллекторе
60, В
Eк доп
Допустимое значение питающего напряжения на коллекторе
28, В
Eбэ доп
Допустимое значение обратного напряжения на эмиттерном переходе
4, В
Iк0 доп
Допустимое значение постоянной составляющей коллекторного тока
5, А
Iб0 доп
Допустимое значение постоянной составляющей базового тока
1,0, А
tп доп
Допустимая температура переходов транзистора
200, C
Rпк
Тепловое сопротивление переход (кристалл) - корпус
2,83, С/Вт
f
Экспериментальное значение верхней частоты диапазона
80, Мгц
Кp
Коэффициент усиления по мощности
8,3…25
Коэффициент полезного действия
60…80, %
Ек
Напряжение коллекторного питания при эксперименте
28, В
Схема включения с ОЭ
Перечисленные в этой таблице параметры, используются при расчёте коллекторной и базовой цепей транзистора.
Расчёт коллекторной цепи можно проводить независимо от схемы включения транзистора, а входной - раздельно для схем с ОЭ или с ОБ. В нашем случае, для оконечного каскада выбрана однотактная схема ГВВ, а схема включения транзистора - схема с ОЭ.

3.2 Расчёт коллекторной цепи

Для современных мощных биполярных транзисторов, как правило, оговаривается номинальное напряжение коллекторного питания Ек.п. В нашем случае по техническому заданию питание передатчика осуществляется от сети 220 В 50 Гц, т.е. нет ограничений по питающему напряжению. Поскольку напряжение Ек.п не задано то в мощном каскаде определим его исходя из допустимого Ек доп которое равно 28 В (см. таблицу 3.1). По техническому заданию наш связной передатчик должен выдавать в нагрузку мощность 6 Вт, а выбранный транзистор 2Т951А может обеспечить выходную мощность порядка 15 Вт. Поэтому учитывая то обстоятельство, что транзистор заведомо недоиспользуется по мощности то целесообразно занизить Ек max на 20…30 % по отношению к допустимому значению, что значительно повышает надёжность его работы, хотя и несколько снижает КПД и Кр, а также увеличивает рассеиваемую на нём мощность. Поскольку при выборе питающего напряжения желательно придерживаться стандартного ряда питающих напряжений: 3; 4; 5; 6; 9; 12; 15; 20; 24; 27; 30; 48; 60; 80 то выберем Ек п = 20 В, что соответствует 28,75% - ому занижению Ек max относительно Ек доп.

Далее расчёт будем вести исходя из номинальной мощности Р1ном при работе транзистора в граничном режиме, поскольку граничный режим можно считать оптимальным на низких и средних частотах (максимальный КПД достигается только в граничном режиме), а также учитывая, что транзистор будет работать в линейном режиме с углом отсечки = 90 (выбираем такой режим), а схема оконечного каскада передатчика будет строиться по однотактной схеме ГВВ. Для расчёта коллекторной цепи воспользуемся методикой предложенной в [5] стр. 109 - 111. Отметим также, что расчёт необходимо вести по наихудшему случаю, т.е. подставлять в расчётные соотношения значения входящих в них величин (см. таблицу 3.1) при которых обеспечиваются наихудшие условия.

1. Величина амплитуды первой гармоники напряжения на коллекторе Uк1 определяется формулой:

2.

(3.2.1)

где Ек - напряжение питания, rнас - сопротивление насыщения, 1() - коэффициент разложения косинусоидального импульса, угол отсечки = 90 , Р1 - номинальная мощность каскада.

Для расчёта подставим Ек, уменьшенное относительно напряжения источника питания Еп на 5В, что может быть связано с потерями по постоянному току в блокировочном дросселе, а выходную колебательную мощность передатчика с запасом, т.е.

Р1 ном.= Р1 1,25 = 6 1,25 = 7,5 Вт

Подставляя численные значения в (3.2.1), получаем:

При этом коэффициент использования напряжения питания составляет:

3. Максимальное напряжение на коллекторе не должно превышать допустимого (Uкэ.доп. = 60 В):

(3.2.2)

4. Амплитуда первой гармоники коллекторного тока определяется выражением:

(3.2.3)

Подставляя в (3.2.2) численные значения величин, получаем:

5. Величина постоянной составляющей коллекторного тока определяется выражением (1.2.3) и не должна превышать допустимой (IК 0 ДОП = 5,0 А):

(3.2.4)

коэффициент разложения косинусоидального импульса для постоянной составляющей 0() равен 0,319:

6. Максимальное значение коллекторного тока составляет:

(3.2.5)

7. Величина максимальной потребляемой мощности от источника питания равна:

(3.2.6)

8. КПД коллекторной цепи при номинальной нагрузке составляет:

(3.2.7)

9. Максимальная рассеиваемая на коллекторе мощность на коллекторе транзистора приближённо рассчитывается так:

(3.2.8)

где . - коэффициент рассогласования входного сопротивления нагрузки, который в оконечном каскаде не должен быть ниже 0,5.

10. Номинальное сопротивление коллекторной нагрузки определяется выражением:

(3.2.9)

Подставляя численные значения в (3.2.9), получаем:

Нагрузкой нашего связного передатчика является фидер с входным сопротивлением 75 Ом, поэтому после трансформации сопротивления с коэффициентом ј, т.е. из большего в меньшее (см. раздел 4 РАСЧЁТ ЦЕПИ СОГЛАСОВАНИЯ) получаем, что Rкэ = 75/4 = 18,75 Ом. Поскольку полученное значение этого сопротивления очень близко к рассчитанному значению этого же сопротивления по формуле (3.2.9), то нет смысла проводить коррекцию проведённых ранее расчётов коллекторной цепи.

3.3 Расчет базовой цепи

Для транзисторов УВЧ и СВЧ существенную роль играют LC - элементы, образующиеся между кристаллом и корпусом транзистора. При расчёте входной цепи транзистора с ОЭ предполагается, что между базовым и имиттерным выводами транзистора по радиочастоте включен резистор Rдоп и Rбк (см. рис. 3.3.1), сопротивление которого составляет:

Рис 3.3.1
(3.3.1)
(3.3.2)
Подставляя численные значения в (3.3.1) и (3.3.2) получаем:
Далее расчёт будем вести в соответствии с методикой [5] стр. 112 - 114.
1. Амплитуда тока базы определяется соотношением:
(3.3.3)
где коэффициент равен:
(3.3.4)
Подставляя численные значения в (3.3.3) и (3.3.4) получаем:
2. Напряжение смещения на эмиттерном переходе при = 90 находится как:
(3.3.5)
Где Еотс = 0,7 В (для кремниевого транзистора).
Подставляя численные значения в (3.3.5) получаем:
3. Значение максимального обратного напряжения на эмиттерном переходе определяется формулой:
(3.3.6)
Подставляя численные значения в (1.12) получаем:
По результатам видно. что полученное значение не превышает допустимое значение (Uбэ доп = 4 В).
4. Рассчитаем параметры эквивалентной схемы входного сопротивления транзистора при включении с общим эмиттером:
(3.3.7)
При расчёте входной индуктивности необходимо добавить к Lэ ещё 3 нГн с учётом погонной индуктивности соединительного проводника с кристаллом, тогда получим:
(3.3.8)
При расчёте rвх оэ необходимо учесть, что Ска = Ск/2, а к Lэ также добавляется погонная индуктивность 3 нГн, после подставления в (3.3.8) необходимых значений имеем:
(3.3.9.)
после подстановки значений в (3.3.9), имеем:
(3.3.10)
Подставляя в (3.3.10) численные значения величин, получаем:


5. Активная и реактивная составляющие комплексного выходного сопротивления транзистора вычисляются по формулам:
(3.3.11)
(3.3.12)
Подставляя в (3.3. и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.