На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Связные передатчики коротковолнового диапазона в режиме однополосной модуляции. Структурная схема современного диапазонного передатчика с однополосной модуляцией. Фильтрация гармоник тока коллектора в широкополосных передатчиках с помощью фильтров.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 24.04.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


6

Исходные данные и задание на проектирование

Номер варианта 7

1. Мощность на выходе фидера 75 Вт

2. Диапазон рабочих частот 8,0-30 МГц

3. Уровень подавления внеполосных излучений 40 дБ

4. Сопротивление фидера 50 Ом

5. Питание от сети переменного тока 220 В

Содержание

Исходные данные и задание на проектирование

Условные обозначения символы и сокращения

Введение

1. Обоснование и выбор структурной схемы

2. Расчет выходного каскада радиопередатчика

2.1. Выбор транзистора оконечного каскада

2.2. Расчет коллекторной цепи

2.3. Расчет базовой цепи

2.4. Расчет цепи коррекции АЧХ

2.5. Расчет фильтра нижних частот

2.6. Расчет трансформаторов на длинных линиях

2.8. Расчет катушек индуктивности и блокировочных элементов

2.9 Вторичный источник питания

Заключение

Библиографический список

Условные обозначения символы и сокращения

АМ - амплитудная модуляция

ОМ - однополосная модуляция

ТДЛ - трансформатор на длинных линиях

ФНЧ - фильтр нижних частот

ЧМ - частотная модуляция

Введение

Большой практический интерес к ОМ и широкое внедрение радиооборудования с ОМ, особенно в КВ диапазоне объясняется известными преимуществами этого вида модуляции по сравнению с АМ и ЧМ.

Очевидным и важным преимуществом ОМ является наиболее узкая полоса частот, занимаемая сигналом с ОМ в радиоканале. Она почти равна полосе исходного модулирующего сигнала. Полоса частот, занимаемая колебанием с АМ, по меньшей мере в 2 раза шире. Благодаря этой особенности ОМ ее применение в системах радиосвязи позволяет почти в 2 раза по сравнению с АМ уменьшить необходимые полосы радиоканалов и тем самым увеличить вдвое число действующих радиосвязей в одном и том же диапазоне частот.

Важным преимуществом ОМ перед АМ является возможность получения в системах радиосвязи с ОМ энергетического выигрыша.

При АМ всё передаваемое сообщение заключено в каждой из боковых полос, так как одна полоса по составу является зеркальным отражением другой. Несущая частота играет вспомогательную роль - переносит информацию о точном значении частоты и фазы колебаний, необходимых для одновременного синфазного детектирования обоих полос АМ сигнала. Без потери передаваемой информации одну из полос можно исключить. Это позволит вдвое сократить занимаемую в эфире полосу частот, но в то же время вдвое уменьшит напряжение на выходе детектора приемника, так как теперь детектируется лишь одна боковая полоса. Экономии энергии передатчика это не дает, так как средняя относительная мощность боковых полос в АМ сигнале невелика (порядка 2%).

1. Обоснование и выбор структурной схемы

Связные передатчики коротковолнового диапазона (f = 1,5-30,0 МГц) работают в режиме однополосной модуляции (ОМ). Однополосный сигнал формируется фильтровым методом на относительно низкой частоте (500 кГц) и переносится с помощью преобразователей частоты в рабочий диапазон. Многократное преобразование сигнала сопровождается появлением большого числа комбинационных составляющих, которые при неудачном выборе частот преобразования могут попасть на вход усилителя мощности и создать помехи вне рабочего диапазона передатчика.

Структурная схема современного диапазонного передатчика с однополосной модуляцией должна строиться так, чтобы снизить вероятность излучения паразитных колебаний и свести к минимуму число перестраиваемых цепей в промежуточных и оконечном каскадах передатчика.

Рассмотрим вариант структурной схемы диапазонного передатчика с ОМ, удовлетворяющего изложенным выше требованиям (рис. 1.1).

Рис. 1.1. Структурная схема однополосного передатчика

Звуковой сигнал с микрофона (М) усиливается усилителем низкой частоты (1) и попадает на балансный модулятор БМ1 (2). На второй вход БМ1 поступает напряжение с опорного генератора (3) с частотой f0. Частота этого генератора стабилизирована кварцем. Значение частоты f0 определяется АЧХ электромеханического фильтра (ЭМФ) и выбором рабочей боковой полосы (верхней или нижней). На выходе первого балансного модулятора получается двухполосный сигнал с ослабленной несущей. Степень подавления несущей частоты на выходе передатчика (в антенне) определяется балансным модулятором и ЭМФ, а нежелательной боковой полосы - только параметрами ЭМФ. Последующие каскады не могут изменить степень подавления этих составляющих однополосного сигнала.

С выхода ЭМФ однополосный сигнал поступает на второй балансный модулятор (5). На другом его входе - сигнал вспомогательной частоты f1. Частота f1 выбирается выше верхней рабочей частоты передатчика - fB. При таком выборе комбинационная частота на выходе БМ2 f1 + f0 также будет выше верхней частоты рабочего диапазона передатчика. Следовательно, колебания вспомогательного генератора f1 и продукты преобразования первого порядка с частотами f1 + f0, если они попадут на вход усилителя мощности, не создадут помех в рабочем диапазоне проектируемого передатчика.

Относительная расстройка между комбинационными частотами на выходе БМ2, как правило, не велика, поэтому селекция нужной комбинационной частоты должна осуществляться пьезокерамическим фильтром (ПФ) или фильтром на поверхностных акустических волнах (7). Полоса пропускания этого фильтра должна быть не меньше полосы прозрачности ЭМФ.

Однополосный сигнал с выхода ПФ в балансном модуляторе БМ3 (8) смешивается с частотой f2. Источником этих колебаний служит синтезатор сетки дискретных частот, генерирующий сетку в диапазоне f2H-f2B с заданным шагом. Частота f2 выбирается выше f1, то есть выше рабочего диапазона. Частоты рабочего диапазона от fН до fB получаются на выходе БМ3. Они равны разности частот f2 и промежуточной частоты на выходе полосового фильтра(7) f = f2 - f1 - f0.

Эти частоты выделяются фильтром нижних частот (10), частота среза которого равна верхней частоте рабочего диапазона fB.

Однополосный сигнал формируется на малом уровне мощности 1-5 мВт. До заданного уровня на выходе передатчика он доводится линейным усилителем мощности.

Цепи связи промежуточных каскадов делают широкополосными, перекрывающими весь диапазон передатчика. Здесь не ставится задача фильтрации высших гармоник, решается только проблема согласования входного сопротивления следующего каскада с выходным предыдущего. Широкое применение находят трансформаторы на длинных линиях (ТДЛ) и цепи, обеспечивающие постоянное входное сопротивление усилительного каскада.

К достоинствам передатчика, выполненного в соответствии со структурной схемой рис. 1.1, следует отнести следующее:

- минимальное число коммутируемых цепей. Изменяется только частота синтезатора и коммутируется фильтрующая цепь на выходе передатчика,

- малая вероятность возникновения внеполосных излучений как следствие особенностей выбора частот преобразования. [2]

2. Расчет выходного каскада радиопередатчика

В оконечном каскаде радиопередатчика необходимо усилить имеющийся сигнал до заданной мощности при этом проходная характеристика транзистора должна быть линейной и угол отсечки коллекторного тока ?=90? (невыполнение этих требования приводит к нелинейным искажениям).

В данном случаем целесообразно оконечный каскад выполнить по двухтактной схеме, что позволяет при отдачи транзисторами мощности меньшей, чем стандартном напряжении питания повысить надежность устройства; а также при использовании данной схемы подавляются четные гармоники на 15-20 дБ, следовательно уменьшится порядок ФНЧ необходимого для подавления внеполосного излучения. Так как проектируемый каскад явлется широкополосным, то выберем в качестве схемы связи генератора с нагрузкой ТДЛ. В связи с падением коэффициента усиления по току ? с увеличением частоты необходима цепь коррекции АЧХ.

2.1 Выбор транзистора оконечного каскада

Для выходного каскада однополосного радиопередатчика, как сказано выше, необходимо выполнить двухтактную схему, в которой транзисторы должны быть идентичны. Для выбора транзистора необходимо руководствоваться следующими параметрами:

транзистор должен отдавать необходимую мощность в нагрузку;

так как передатчик однополосный, то необходимо, чтобы проходная характеристика была линейной.

Как правило, для генерации заданной мощности в нагрузке в определенном диапазоне частот можно подобрать целый ряд транзисторов. При одинаковой выходной мощности ГВВ на этих приборах будут иметь разный КПД и коэффициент усиления по мощности. Из группы транзисторов нужно выбрать тот, который обеспечивает наилучшие электрические характеристики усилителя мощности.

Коэффициент полезного действия каскада связан с величиной сопротивления насыщения транзистора - r нас ВЧ. Чем меньше его величина, тем меньше остаточное напряжение в граничном режиме и выше КПД генератора.

Коэффициент усиления по мощности КР зависит от ряда параметров транзистора - коэффициента передачи тока базы о, частоты единичного усиления f т и величины индуктивности эмиттерного вывода LЭ. При прочих равных условиях КР будет тем больше, чем выше значение о, f T и меньше LЭ.

Из этих условий выберем транзистор КТ927А, который имеет следующие параметры:

Параметры идеализированных статических характеристик.
Сопротивление насыщения транзистора на высокой частоте rнас ВЧ=0.4 Ом.
Сопротивление утечки эмиттерного перехода R у.э>0.1 кОм.
Коэффициент усиления по току в схеме с ОЭ на низкой частоте (f>0) ?о=15..50.
Сопротивление материала базы 0.2 Ом.
Сопротивление эмиттера 0.01 Ом.
Граничная частота усиления по току в схеме с ОЭ fт=100..200 МГц.
Барьерная емкость коллекторного перехода Ск=120..190 пФ при Ек=28В.
Барьерная емкость эмиттерного перехода Сэ=1700..2500 пФ при Еэ=5В.
Индуктивность вывода эмиттера 5 нГн.
Индуктивность вывода базы 5 нГн.
Допустимые параметры
Предельное напряжение на коллекторе Uкэ доп=70 В.
Обратное напряжение на эмиттерном переходе Uбэ доп=3.5 В.
Постоянная составляющая коллекторного тока Iко. макс. доп=20А.
Максимально допустимое значение коллекторного тока Iк. макс. доп=30А.
Диапазон рабочих частот 1.5..30 МГц.
Тепловые параметры
Максимально допустимая температура переходов транзистора tп.доп=200?С.
Тепловое сопротивление переход - корпус Rпк=1.5?С /Вт.
Энергетические параметры
Экспериментальные характеристики при работе в условиях, близких к предельно допустимым по какому-либо признаку (параметру) и ограничивающих мощность транзистора так, чтобы гарантировать достаточную надежность его работы;
f ' =30 МГц.
P'н >75 Вт.
К'н=13.4..16.
?'=40..52%.
Е'к=28 В.
Режим работы линейный < -30 дБ.
Выберем коэффициент полезного действия согласующей цепи ?сц=0.85.
Следовательно мощность на выходе одного плеча двухтактной схемы определится как .
P1=44 Вт.

2.2 Расчет коллекторной цепи

Расчет коллекторной цепи выходного транзисторного каскада проводится по методике, изложенной в [2, 5] - расчет ГВВ на заданную мощность, вернее расчет одного плеча симметричной двухтактной схемы на половинную мощность.
Особенность расчета в данном случае в том, что согласующий трансформатор можно выполнить лишь для определенного набора коэффициентов трансформации, поэтому рассчитаем выходное сопротивление коллекторной нагрузки одного плеча двухтактной схемы при напряжении питания Eк=28 В; выбрав коэффициент трансформации и соответствующее ему сопротивление коллекторной нагрузки, рассчитаем коллекторную цепь.
Крутизна линии граничного режима
Sгр=2.5 А/В
Коэффициент использования коллекторного напряжения
(2.1)
Амплитуда напряжения на коллекторе
Uк=?гр·Eк (2.2)
Uк=0.9·28=25.2 В
Сопротивление коллекторной нагрузки
(2.3)
Rкэ=2·25.22/44=7.22 Ом
Выберем коэффициент деления
Сопротивление коллекторной нагрузки двух плеч двухтактного генератора 14.44 Ом
Сопротивление нагрузки, согласно заданию на проектирование 50 Ом.
Отношение двух сопротивлений и будет коэффициент трансформации 0.28. Ближайший коэффициент 0.25. Rкэ=6.25 Ом
Для определенного сопротивления нагрузки проведем расчет коллекторной цепи.
(2.4)
Uк=23.45 В
Амплитуда первой гармоники коллекторного тока
(2.5)
Постоянная составляющая коллекторного тока
, (2.6)
где:
?1(?) - коэффициент Берга ?1(90?) =0.5;
?о(?) - коэффициент Берга ?0(90?) =0.319
Iко=2.394 А
Максимальный коллекторный ток
(2.7)
Iк max =7.504 A
eк minгр =Iк max·rнас ВЧ (2.8)
eк minгр =7.504·0,4=3 В
Напряжение питания
Eк= eк minгр+Uк (2.9)
Eк=3+23.45=26.45 В
Потребляемая мощность от источника коллекторного питания
Po max=EкIко (2.10)
Po max=26.45·2.394=63.32 Вт
Коэффициент полезного действия коллекторной цепи
Максимальное напряжение на коллекторе не должно превышать допустимого значения Uкэ доп=70 В
Uк max=Eк+1.25·Uк
Uк max=26.45+1.25·23.45=55.76 Вт

2.3 Расчет базовой цепи

В широкодиапазонных двухтактных генераторах при работе транзисторов с углом отсечки ?=90? (класс В) важно, чтобы в импульсах ток перекосов не было так, как при этом отсутствуют нечетные гармоники (3?, 5 ?,…) Устранение перекосов в импульсах достигается включением шунтирующего добавочного сопротивления Rд между выводами базы и эмиттера транзистора. Сопротивление Rд выбирают так, чтобы выровнять постоянные времени эмиттерного перехода в закрытом и открытом состояниях:
, (2.11)
и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.