На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Сигналы в системах (зондирующий, сигнал подсвета, запросный, собственное радиоизлучение объекта наблюдения, отраженный сигнал и т.п.). Электромагнитные поля. Поляризационная структура электромагнитного поля. Амплитудное равномерное распределение поля.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 14.12.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
«Пространственно-временная и поляризационная структура сигналов. Характеристика временной структуры сигналов»

МИНСК, 2008
Сигналы в системах (зондирующий, сигнал подсвета, запросный, ответный, собственное радиоизлучение объекта наблюдения, отраженный сигнал и т.п.) являются электромагнитными полями, которые характеризуются временной и пространственной структурой. Кроме того, электромагнитное поле, являясь векторным, в отличие, например, от скалярного акустического поля, характеризуется еще и поляризационной структурой. Следовательно, модель сигнала должна отражать его временную, пространственную и поляризационную структуру:
Здесь - вектор напряженности электрического (магнитного) поля, в общем случае эллиптически поляризованного (рис. 1.1), который может быть разложен на две ортогонально поляризованные составляющие, каждая из которых характеризуется своей амплитудой и фазой:
где - поляризационный базис - пара ортонормированных векторов и единичной длины,
Е1 , Е2 - комплексные числа (координаты) вектора в базисе являющиеся проекциями вектора на направления ортов и соответственно:
Обычно применяемые разложения в базисе из двух линейно поляризованных компонент или двух поляризованных по кругу компонент являются лишь частными случаями.
Меняя амплитуды и фазы (управляя амплитудами и фазами) ортогонально поляризованных колебаний (волн) с линейной поляризацией, получаемых, например, с помощью горизонтально и вертикально расположенных вибраторов, или с круговой поляризацией, получаемых, например, с помощью спиральных излучателей с правозаходной или левозаходной спиралью, можно формировать необходимую поляризационную структуру излучаемого сигнала и управлять ею.
Рис.1. Годограф - траектория, описываемая концом вращающегося с угловой скоростью 0 вектора напряжённости электрического (магнитного) поля эллиптически поляризованной волны.
Рис.2. Поляризационная структура электромагнитного поля при случайных коррелированных комплексных амплитудах ортогонально поляризованных составляющих.
Рис.3. Поляризационная структура электромагнитного поля при независимых комплексных амплитудах ортогонально поляризованных составляющих.
В общем случае комплексные амплитуда ортогонально поляризованных колебаний (Е1, Е2) могут быть функциями времени, в том числе случайными. При этом поляризационный эллипс (его форма и ориентация) меняется во времени. При случайном характере комплексных амплитуд поляризационный эллипс размывается, причем степень его размытости определяется степенью коррелированности случайных амплитуд E1(t) и Е2(t)
При независимых комплексных амплитудах электромагнитная волна становится хаотически поляризованной.
Пространственная структура сигнала описывается амплитудно-фазовым распределением поля на раскрыве антенной системы (передающей или приемной)
где x, у - координаты раскрыва антенны.
Наиболее часто используемыми амплитудными и фазовыми распределениями поля на раскрыве антенны являются:
- амплитудное равномерное распределение (рис. 4)
, ,
где x, y - размеры раскрыва;
- амплитудное колоколообразное (гауссово) распределение (рис. 5)
где Xэф, Yэф - эффективный раскрыв антенны удовлетворяющий условию
- амплитудное косинусоидальное распределение m-й степени (рис. 6)
, , ,
причем
- фазовое равномерное распределение, соответствующе не наклоненному плоскому волновому фронту (рис.7)
, , ;
- фазовое линейное распределение, соответствующее наклоненному плоскому волновому фронту (рис. 8)
,
причем согласно рис. 2.2.8
,
аналогично
;
- фазовое квадратичное распределение, соответствующее сферическому волновому фронту (рис. 9)
,
причем согласно рис.2.2.9
,
аналогично
,
где R - радиус сферического волнового фронта, знак «+/- « соот-ветствует положению сферического фронта относительно раскрыва антенны.
В общем случае амплитудно-фазовое распределение поля на раскрыве антенны может быть не только детерминированным, но и случайным, что подробно будет рассмотрено при изложении вопросов пространственной обработки сигналов.
Временная структура сигнала характеризуется амплитудно-фазовыми законами регулярной U(t) и случайной М(t) модуляции:
Регулярная модель отражает первичную амплитудно-фазовую модуляцию при формировании сигнала, а случайная модель, как правило, отражает вторичную амплитудно-фазовую модуляцию, приобретаемую сигналом в процессе его распространения и отражении:
Будем считать результатом регулярной модуляции периодическую последовательность N одиночных радиосигналов, каждый из которых характеризуется законом модуляции U0(t):
,
причем
где Тп

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.