Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


доклад Радиоэлектронный канал. Структура радиоэлектронного канала утечки информации. Передатчики функциональных каналов связи. Виды утечки информации. Антенные устройства. Классификация помех. Экранирующие свойства некоторых элементов здания.

Информация:

Тип работы: доклад. Предмет: Схемотехника. Добавлен: 20.04.2007. Год: 2007. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Доклад
на тему: Радиоэлектронные каналы утечки информации.


Содержание

1. Радиоэлектронный канал.
2. Структура радиоэлектронного канала утечки информации.
3. Виды утечки информации.
4. Антенные устройства.
5. Классификация помех.


Радиоэлектронные каналы утечки информации.
В радиоэлектрон ом канале передача носителем информации является электрический ток и электромагнитное поле с частотами колебаний от звукового диапазона до десятков ГГц.    &n sp; 
1. Радиоэлектронный канал относится к наиболее информативным каналам утечки в силу следующих его особенностей:    &n sp; 
· независимость функционирования канала от времени суток и года, существенно меньшая зависимость его параметров по сравнению с другими каналами от метеоусловий;
· высокая достоверность добываемой информации, особенно при перехвате ее в функциональных каналах связи (за исключением случаев дезинформации); 
· большой объем добываемой информации;    &n sp; 
· оперативность получения информации вплоть до реального масштаба времени;
· скрытность перехвата сигналов и радиотеплового наблюдения.
В радиоэлектро ном канале производится перехват радио и электрических сигналов, радиолокационное и радиотепловое наблюдение. Следовательно, в рамках этого канала утечки добывается семантическая информация, видовые и сигнальные демаскирующие признаки. Радиоэлектронные каналы утечки информации используют радио, радиотехническая, радиолокационная и радиотепловая разведка.    &n sp; 
2. Структура радиоэлектронного канала утечки информации в общем случае включает (см. рис. 1) источник сигнала или передатчик, среду распространения электрического тока или электромагнитной волны и приемник сигнала.
Рис. 1. Структура радиоэлектронного канала утечки информации.
В радиоэлектро ных каналах утечки информации источники сигналов могут быть четырех видов:    &n sp; 
- передатчики функциональных каналов связи;    &n sp; 
- источники опасных сигналов;    &n sp; 
- объекты, отражающие электромагнитные волны в радиодиапазоне;    &n sp; 
- объекты, излучающие собственные (тепловые) радиоволны.    &n sp; 
Средой распространения радиоэлектронного канала утечки информации являются атмосфера, безвоздушное пространство и направляющие - электрические провода различных типов и волноводы. Носитель в виде электрического тока распространяется по проводам, а электромагнитное поле - в атмосфере, в безвоздушном пространстве или по направляющим - волноводам. В приемнике производится выделение (селекция) носителя с интересующей получателя информацией по частоте, усиление выделенного слабого сигнала и съем с него информации - демодуляция.    &n sp; 
При перехвате сигналов функциональных каналов связи передатчики этих каналов являются одновременно источниками радиоэлектронных каналов утечки информации. В общем случае направления распространения электромагнитной волны от передатчика к санкционированному получателю и злоумышленнику отличаются. В функциональны каналах связи максимум излучения энергии электромагнитной волны ориентируют в направлении расположения приемника санкционированного получателя. Поэтому мощность источника сигналов радиоэлектронного канала утечки информации, как правило, существенно меньше мощности излучения в функциональном канале связи.    
3. Виды утечки информации
В зависимости от способа перехвата информации различают два вида радиоэлектронного канала утечки информации.    &n sp; 
В канале утечки 1_го вида производится перехват информации, передаваемой по функциональному каналу связи. С этой целью приемник сигнала канала утечки информации настраивается на параметры сигнала функционального радиоканала или подключается (контактно или дистанционно) к проводам соответствующего функционального канала. Такой канал утечки информации имеет общий с функциональным каналом источник сигналов - передатчик. Так как места расположения приемников функционального канала и канала утечки информации в общем случае не совпадают, то среды распространения сигналов в них от общего передатчика различные или совпадают, например, до места подключения приемника злоумышленника к проводам телефонной сети.    &n sp; 
Радиоэлектронный канал утечки 2_го вида имеет собственный набор элементов: передатчик сигналов, среду распространения и приемник сигналов. Передатчик этого канала утечки информации образуется случайно (без участия источника или получателя информации) или специально устанавливается в помещении злоумышленником. В качестве такого передатчика применяются источники опасных сигналов и закладные устройства. Опасные сигналы, как отмечалось ранее, возникают на базе акустоэлектрических преобразователей, побочных низкочастотных и высокочастотных полей, паразитных связей и наводок в проводах и элементах радиосредств. Опасные сигналы создаются в результате конструктивных недоработок при разработке радиоэлектронного средства, объективных физических процессов в их элементах, изменениях параметров в них из-за старения или нарушений правил эксплуатации, не учете полей вокруг средств или токонесущих проводов при их прокладке в здании и т. д.    &n sp; 
Вариантов условий для возникновения опасных сигналов очень много. Например, в усилительных каскадах любого радиоэлектронного средства (радиоприемника, телевизора, радиотелефона и др.) могут возникнуть условия для генерации сигналов на частотах вне звукового диапазона, которые модулируются электрическими сигналами акустоэлектрических преобразователей. Функции акустоэлектрических преобразователей могут выполнять элементы (катушки индуктивности, конденсаторы) генераторов, являющихся функциональными устройствами.    &n sp; 
Особенностью передатчиков этого канала является малые амплитуда электрических сигналов - единицы и доли мВ, и мощность радиосигналов, не превышающая десятки мВт (для радиозакладок). В результате этого протяженность таких каналов невелика и составляет десятки и сотни метров. Поэтому для добывания информации с использованием такого канала утечки информации приемник необходимо приблизить к источнику на величину длины канала утечки или установить ретранслятор. Среда распространения и приемники этого вида каналов не отличаются от среды и приемников каналов 1_го вида.    &n sp; 
   & bsp; 
В общем случае направляющие линии связи создаются для передачи сигналов в заданном направлении с должным качеством и надежностью. Способы и средства передачи электрических сигналов по проводам рассматриваются прикладной области радиотехники, называемой проводной связью.    &n sp; 
Различают воздушные и кабельные проводные линии связи. Воздушные линии связи относятся к симметричным цепям, отличительной особенностью которых является наличие двух проводников с одинаковыми электрическими свойствами.    &n sp; 
В зависимости от типа несущих конструкций они делятся на столбовые и стоечные. Столбовыми называются линии, несущими конструкциями являются деревянные или железобетонные опоры. Опорами столбовых линий служат металлические стойки, установленные, например, на крышах зданий. Для изоляции проводов воздушных линий друг от друга и относительно земли их укрепляют на фарфоровых изоляторах.    &n sp; 
 Более широко применяются кабельные линии связи. Кабельные линии связи получили доминирующее развитие при организации объектовой, городской и междугородной телефонной связи. Они составляют 65% телефонных линий России. Кабели бывают симметричными и коаксиальными.
Если обе жилы цепи, образованного кабелем, выполнены из проволоки одинакового диаметра, имеют изоляцию одинаковой конструкции и расположены так, что между ними можно провести плоскость симметрии, то кабель называется симметричным. Если же оба проводника цепи выполнены в форме соосных цилиндров, в поперечном сечении имеют форму концентрических окружностей, то такой кабель - коаксиальный.
Симметричные кабели представляют собой проводники (жилы) с нанесенными на них одним или несколькими слоями изолятора из диэлектрических материалов. Несколько жил, объединенных единым изолятором в виде ленты, образуют ленточные кабели или полосковые линии. Известные конструкции симметричных кабелей содержат от 1х2 до 2400х2 жил под общей защитной оболочкой.    &n sp; 
В коаксиальном кабеле один проводник концентрически расположен внутри другого проводника, имеющего форму полого цилиндра. Внутренний проводник изолируется от внешнего с помощью различных изоляционных материалов и конструкций. Для изоляции коаксиальных пар кабеля применяется сплошной и пористый полиэтилен, изоляция в виде шайб, в последовательно соединенных баллончиков, напоминающий разрез бамбука и др. Для обеспечения гибкости кабеля внешний проводник выполняется из медной или железной сетки, а для защиты от внешних воздействий он покрывается слоем изолятора (полихлорвинила).
Основными параметрами проводных линий связи являются ширина пропускаемого ими спектра частот и собственное затухания Zc = 10 lgPвх / Pвых, где Pвх и Pвых - мощность сигнала на входе и выходе цепи соответственно.
Если сопротивление проводников на низких частотах (в диапазоне 0-100 кГц) определяется удельным сопротивлением материала и площадью поперечного сечения проводника, то на более высоких частотах начинается сказываться влияние поверхностного эффекта. Сущность его заключается в том, что переменное магнитное поле, возникающее при протекании по проводнику тока, создает внутри проводника вихревые токи, В результате этого плотность основного тока перераспределяется по сечению проводника (жилы): уменьшается в центре и возрастает на периферии. Глубина проникновения (в мм) тока в медную жилу =67/, где f-частота колебаний в Гц. На частоте f=60 кГц глубина проникновения составляет приблизительно 0.3 мм, а на частоте 250 кГц - на порядок ниже, всего около 0.03 мм. Следовательно, ток с этой частотой распространяется по гипотетической тонкой медной трубке с существенно меньшей площадью сечения и, соответственно, большим сопротивлением.
На величину затухания линии влияют также электрические характеристики диэлектрика, наносимого на металлические провода. За счет их удается расширить полосу пропускания линии. При передаче по воздушным линиям со стальными проводами ширина пропускания составляет около 25 кГц, с медными проводами - до 150 кГц, по симметричным кабелям - до 600 кГц, Расширению спектра частот, передаваемых по симметричным цепям, препятствуют возрастающие наводки. Например, удовлетворительным для телефонных линий считается значение переходного затухание порядка 60-70 дБ.
В коаксиальном кабеле электрическое поле замыкается между внутренним и внешним проводниками, поэтому внешнее электрическое поле отсутствует. Кабель не имеет также внешнего магнитного и электромагнитного полей, что и обусловливает его основные преимущества перед симметричными. Вследствие поверхностного эффекта ток при повышении частоты оттесняется во внутреннем проводнике к его наружной поверхности, а во внешнем, наоборот, к внутренней. Стандартная коаксиальная пара 1.2/4.4 (с диаметрами внутреннего и внешнего проводников - 1.2 и 4.4. мм соответственно) обеспечивают передачу 900-960 телефонных каналов на расстояние до 9 км или 3600 каналов на расстояние 1.5км. При увеличении диаметров проводников до 2.6/9/5 число телефонных каналов для длины участка 1.5 км возрастает до 10800.Ширина частотного диапазона такого кабеля достигает 60 МГц. Повышение частотного диапазона потребует дальнейшего увеличения диаметров проводников коаксиального кабеля.
Электромагнитная волна представляет форму существования электромагнитного поля в виде изменяющихся во времени по синусоидальному закону значений напряженности электрического и магнитного полей.
Электромагнитная волна как носитель информации в радиоэлектронном канале утечки возникает при протекании по проводам электрического тока переменной частоты и распространяются от источника ненаправленного излучения радиально во все стороны с конечной скоростью, в атмосфере несколько меньшей скорости света. Векторы напряженности электрического и магнитного полей взаимноперпендикуляр ы и перпендикулярны направлению распространения электромагнитной волны. Электромагнитная волна характеризуется частотой колебания, мощностью и поляризацией. По частоте электромагнитные волны классифицируются в соответствии с Регламентом радиосвязи, утвержденным на Всемирной административной конференции в Женеве в 1979 г. (табл. 1).
Диапазон
длин волн
Наименование
волн
Обозначение и
наименование частот
Диапазон
частот
> 100 км
-
ELF-чрезвычайно низкие
Доли Гц-3 кГц
10-100 км
Мириаметровые
VLF(ОНЧ)-очень низкие
3-30 кГц
1-10 км
Километровые
(длинные)
LF(НЧ)-низкие
30-300 кГц
100-1000 м
Гектаметровые
(средние)
MF(СЧ)-средние
300-3000 кГц
10-100 м
Декаметровые
(короткие)
HF(ВЧ)-высокие
3-30 МГц
1-10 м
Метровые
(ОВЧ)-очень высокие
30-300 МГц
10-100 см
Дециметровые
UHF(УВЧ)-ультравысок е
300-3000 МГц
1-10 см
Сантиметровые
SHF(СВЧ)-сверхвысоки
3-30 ГГц
1-10 мм
Миллиметровые
EHF(КВЧ)-крайне высокие
30-300 ГГц
0.1-1 мм
Децимиллиметровые
ГВЧ-гипервысокие
300-3000 ГГц
Поляризация определяет направление вектора напряженности электрического поля. Если вектор электрического поля лежит в вертикальной плоскости, то поляризация вертикальная, когда он находится в горизонтальной плоскости, то - горизонтальная. Промежуточное положение характеризуется углом поляризации между плоскостями поляризации и распространения. Плоскостью поляризации называется плоскость, в которой находятся вектора электрического поля и вектор распространения электромагнитной волны. Плоскость распространения имеет вертикальное расположение и проходит через вектор распространения электромагнитной волны.    &n sp; 
Мощность излучения электромагнитного поля тем выше, чем ближе частота колебаний в распределенном контуре, образованного индуктивностью проводников и распределенной емкостью между ними и землей, к частоте сигнала. Устройства, в которых обеспечивается эффективное преобразование энергии электрических сигналов в электромагнитную волну, называются антеннами.
   & bsp; 
4. Антенные устройства являются неотъемлемой частью передающих и приемных радиоэлектронных средств. Причем их конструкция остается неизменными в режимах передачи и приема, за исключением тех случаях, когда излучается большая мощность. В этом случае приходится принимать дополнительные меры по предотвращению электрического пробоя в высоковольтных цепях передающей антенны, необходимость в которых отсутствует для приемной. В общем случае принцип обратимости позволяет передающую антенну использовать в качестве приемной и наоборот.    &n sp; 
Характер поляризации электромагнитной волны зависит от конструкции и расположения излучающих элементов антенны. Несоответствие поляризации электромагнитной волны пространственной ориентации элементов приемной антенны, в которых наводятся электрические заряды, приводит к уменьшению величины этих эарядов. Радиоволны в зависимости от условий распространения делятся на земные (поверхностные), прямые, тропосферные и ионосферные (пространственные).    &n sp; 
Земными называются радиоволны, которые распространяются в непосредственной близости от поверхности Земли и частично огибают ее поверхность благодаря явлению дифракции. Прямыми названы радиоволны, распространяющиеся прямолинейно в атмосфере и космосе.
Радиоволны, которые распространяются в тропосфере - приземной неоднородной области атмосферы не выше 10-12 км от поверхности Земли, называются тропосферными. В тропосфере происходит рассеивание, а также частичное искривление траектории и отражение радиоволн от неоднородностей тропосферы.  Ионосферными называют радиоволны, распространяющиеся в результате последовательного отражения от ионосферы и земной поверхности. Ионосферу образуют ионизированные под действием ультрафиолетового излучени и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.