На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Определение параметров и структуры управления двигателя постоянного тока. Разработка принципиальной электрической схемы и выбор её элементов. Разработка алгоритма управления и расчёт параметров устройств управления скорости с внутренним контуром потока.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 29.07.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


МИНИСТЕРСТВО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ

Пояснительная записка к курсовому проекту по СУЭП
Содержание

Введение
1. Определение параметров и структуры объекта управления
2. Разработка алгоритма управления и расчёт параметров устройств управления
3. Моделирование процессов управления, определение и оценка показателей качества
4. Разработка принципиальной электрической схемы и выбор её элементов
Список литературы
Введение

На современном этапе, характеризующемся приоритетным развитием машиностроения и автоматизации производства, автоматизированный электропривод сформировался как самостоятельное научное направление, в значительной степени определяющее прогресс в области техники и технологии, связанных с механическим движением, получаемым путем преобразования электрической энергии. Этим объясняется большой интерес специалистов к новым разработкам в данной отрасли техники и к ее научным проблемам.

Четко определился объект научного направления - система, отвечающая за управляемое электромеханическое преобразование энергии и включающая два взаимодействующих канала - силовой, состоящий из участка электрической сети, электрического, электромеханического, механического преобразователей, технологического рабочего органа, и информационный канал. В рамках данного курсового проекта рассматривается разработка информационного канала.

1. Определение параметров и структуры объекта управления

В состав объекта управления входит двигатель постоянного тока независимого возбуждения с параметрами по табл. 10.11 [1, стр. 277]:
- номинальная мощность,
- номинальное напряжение питания обмотки возбуждения и якорной цепи,
- КПД,
- номинальная частота вращения,
- максимальная частота вращения,
- сопротивление обмотки якоря,
- сопротивление добавочных полюсов,
- индуктивность обмотки якоря,
- сопротивление обмотки возбуждения,
- момент инерции якоря.
- число пар полюсов.
- коэффициент инерционности механизма.
Данный ЭД предназначен для работы в широкорегулируемых электроприводах, соответствует , имеет защищенное исполнение, с независимой вентиляцией (асинхронный двигатель ). Номинальная угловая скорость вращения:
Максимальная угловая скорость вращения:
Номинальный ток якоря:
Суммарное сопротивление якорной цепи:
Произведение постоянной машины на номинальный поток:
Постоянная времени якорной цепи:
Номинальный момент:
Номинальный ток обмотки возбуждения:
Исходя из высоты оси вращения по табл. 1 [2, стр. 5]:
По рис. 4 [2, стр. 10]:
По рис. 2б [2, стр. 8]:
По табл. 2 [2, стр. 9] для класса изоляции :
По табл. 3 [2, стр. 10] для :
Окончательно получим:
По рис. 3 [2, стр. 9]:
Полюсное деление равно:
Число витков обмотки возбуждения [2, стр. 27]:
Номинальный магнитный поток:
Постоянная машины:
Коэффициент рассеяния [3, стр. 38]:
Индуктивность обмотки возбуждения:
Постоянная времени обмотки возбуждения:
Постоянная времени обмотки возбуждения:
Суммарный момент инерции механизма:
Так же объёкт управления содержит возбуждения и напряжения якоря, частота коммутации которых:
Постоянная времени преобразователей равна:
Так как и представим преобразователи в виде пропорциональных звеньев, откуда с учетом диапазона стандартных управляющих сигналов () имеем и максимальной скважности () получим:
2. Разработка алгоритма управления и расчёт параметров устройств управления

Объект управления описывается следующими уравнениями [3, стр.38-39]:
Выберем двухконтурную систему управления скорости с внутренним контуром потока (рис. 1).
Рис. 1. Двухконтурная система регулирования скорости.
Внутренний контур потока представлен на рис. 2.


Рис. 2. Контур регулирования потока.
Универсальная кривая намагничивания представлена на рис. 3.
Так как регулирование происходит изменением потока, минимальный поток будет при максимальной скорости:
Минимальный ток возбуждения (по рис. 3):
Рис. 3. Универсальная кривая намагничивания.
При этом коэффициент линеаризации кривой намагничивания лежит в диапазоне:
Максимальная постоянная времени потока:
Коэффициент форсирования тока возбуждения [4, стр. 559]:
Малая постоянная времени:
Желаемая передаточная функция замкнутого контура потока:
Желаемая передаточная функция разомкнутого контура потока:
Передаточная функция разомкнутого контура потока:
Коэффициент обратной связи по потоку:
Передаточная функция регулятора потока:
Коэффициент подлежит определению непрерывно, для чего контур потока будет модифицирован (рис. 4.).
Рис. 4. Модифицированный контур регулирования потока.
Коэффициент обратной связи по скорости:
Коэффициент обратной связи ЭДС:
Коэффициент обратной связи по току возбуждения:
Коэффициент нормализации
С учётом этого:
Внешний контур скорости представлен на рис. 5.
Рис. 5. Контур регулирования скорости.
Желаемая передаточная функция разомкнутого контура скорости:
Передаточная функция разомкнутого контура скорости:
Передаточная функция регулятора скорости:
Так как нагрузка с постоянной мощностью изменяет знак и коэффициент подлежит определению непрерывно контур скорости также будет модифицирован (рис. 6.).
Рис. 6. Модифицированный контур регулирования скорости.
Коэффициент обратной связи по току якоря:
Отсюда следует:
Передаточная функция контура компенсирующего влияние нагрузки:
Коэффициент задания мощности нагрузки:
Откуда (с учётом принятых выше коэффициентов) имеем:
Структура системы управления стабилизатором напряжения в цепи якоря приведена на рис. 7.

Рис. 7. Контур управления напряжением якоря.
Здесь:
Структурная схема всей системы управления и объекта приведена на рис. 8.
3. Моделирование процессов управления, определение и оценка показателей качества

Модель объекта и системы управления в комплексе представлена на рис. 9.
Моделирование будем проводить по нижеследующему алгоритму:
a. Пуск на номинальную скорость -
максимальный скачёк задания -, (рис. 10 - рис. 14)
b. Проверка отработки задания - (рис. 15 - рис. 19)
Рис. 10. Зависимость от времени.
Рис. 11. Зависимость и от времени.
Рис. 12. Зависимость и от времени.
Рис. 13. Зависимость и от времени.
Рис. 14. Зависимость от времени.
Рис. 15. Зависимость от времени.
Рис. 16. Зависимость и от времени.
Рис. 17. Зависимость от времен и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.