Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Курсовик Общая классификация насосов, принцип действия и назначение автоматических насосных станций. Методика проектирования мини-станции для автоматического управления насосом, ее экономическое обоснование, оценка эффективности и экологической безопасности.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 13.12.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


1. Вопросы автоматизации насосных станций
1.1 Общая классификация насосов
Государственный стандарт определяет насос как машину для создания потока жидкой среды. Развитие этого определения приводит к пониманию насоса как машины предназначенной для перемещения жидкости и увеличения её энергии. При работе насоса энергия, получаемая им от двигателя превращается в потенциальную, кинетическую и в незначительной мере в тепловую энергию потока жидкости.
Насосы относятся к классу гидравлических машин.
Классификация насосов по энергетическому и конструктивному признакам представлена на рис. 1.1.1.
ГОСТ 17398-72 подразделяет насосы на два основных класса: динамические и объёмные.
В динамических насосах передача энергии потоку происходит под влиянием сил, действующих на жидкость в рабочих полостях, постоянно соединённых с входом и выходом насосов. Характерными представителями этого класса являются центробежные и осевые насосы. Среди динамических насосов, применяемых в промышленности, наиболее распространены лопастные, в которых жидкая среда перемещается под воздействием движущихся лопастей, и вихревые. В последних жидкость перемещается в тангенциальном направлении благодаря действию плоских радиальных лопастей, расположенных по периферии рабочего колеса.
Большое распространение лопастных машин обусловлено удобством комбинирования их с приводными двигателями, компактностью при больших подачах, достаточно высоким КПД, возможностью достижения высоких давлений.

1.2 Понятие об автоматических насосных станциях

Все основные операции на насосной станции (открытие задвижки на всасывающем трубопроводе; включение вакуум-насоса, если отсутствует заливка из напорного трубопровода; включение электродвигателя рабочего насоса; отключения вакуум-насоса; открытие задвижки на напорном трубопроводе; работа насоса; укрытие задвижки; остановка насоса) могут быть автоматизированы. При помощи элементов автоматизации насосные агрегаты могут включаться или отключаться в зависимости от уровня воды в резервуарах и давления в трубопроводах. Насосные агрегаты автоматически отключаются также в случаях перегрузки двигателя, падения напряжения в сети, прекращения подачи воды насосом, перегрева подшипников и т. д. Сигнализацию об изменении уровня воды в резервуарах и давления в трубопроводе осуществляют различные реле, в том числе реле уровня.
Применяются полуавтоматические и полностью автоматические насосные станции. На первых процесс пуска отдельных насосных агрегатов частично или полностью автоматизирован, но первоначальный импульс производится вручную персоналом станции. На автоматических насосных станциях включение отдельных агрегатов, их остановка и все операции по регулированию во время самой работы производятся автоматически без участия обслуживающего персонала. Наибольший экономический эффект и наивысшие технические показатели дают полностью автоматизированные насосные станции.
1.3 Анализ существующих схемотехнических решений датчиков уровня жидкости

Для автоматизации насосных станций применяются специальные электромагнитные, механические, гидравлические и тепловые приборы. В частности, в настоящее время, вариация схемотехнических решений датчиков уровня жидкости очень многообразна. Среди прочих схем данного типа можно выделить несколько, отличающихся своей простотой, которые мы рассмотрим ниже.
Поплавковое реле уровня предназначено для воздействия на электрическую цепь при определенном уровне воды в резервуаре. В резервуар, в котором контролируется уровень жидкости, погружается поплавок 1 (рис. 1.3.1), подвешенный на конце троса, перекинутого через блок 3. На другом конце его укреплен уравновешивающий груз 9. На обеих ветвях троса укреплены две переключающие шайбы 2 и 8, которые при предельных уровнях жидкости в резервуаре поворачивают коромысло 4 контактного устройства 6 и замыкают контакты проводов 7 и 5. Эти контакты в свою очередь замыкают или размыкают соответствующие исполнительные цепи управления. Во избежание неустойчивой работы агрегата необходимо обеспечить мгновенное перемещение контактов из одного положения в другое.
Сильфонное реле уровня (рис. 1.3.2) состоит из гофрированной тонкостенной трубки 2, закрытой с двух концов. В дне этой трубки сделано отверстие, где закреплен штуцер 1 для включения реле в трубопровод. На стержне 5 прикреплен рычаг 4, соединенный с контактами 3. При повышении давления трубка 2 сильфона растягивается, приподнимает рычаг 4, и цепь сети управления разрывается. При снижении давления пружина 6 сжимает трубку 2 и переводит рычаг 4, вследствие чего цепь сети управления через линейные провода Л1 и Л2 замыкается. Беспоплавковое реле уровня работает при давлении 1?105 Н/м2
Рис. 1.3.1. Поплавковое реле уровня
Рис. 1.3.2. Сильфонное реле уровня
Реле давления электроконтактного типа изображено на рис. 1.3.3 Как и в обычных манометрах, основной частью его является трубчатая пружина 1. Электроконтактный манометр имеет два неподвижных контакта - левый 2, замыкающийся при давлении ниже предельного, на которое он рассчитан, и правый 4, замыкающийся при давлении, превышающем установленную - для него величину. Подвижный контакт 3 укреплен на стрелке манометра. Контактная система и изоляция манометра допускают возможность включения их в цепи управления напряжением до 380 В переменного тока или 220 В постоянного тока.
Рис. 1.3.3. Реле давления (электроконтактный манометр типа ЭКМ)
Реле времени (рис. 1.3.4) устанавливается, чтобы обеспечить выдержку времени (от нескольких секунд до нескольких минут) между отдельными операциями при автоматическом управлении. Реле состоит из двух неподвижных контактных пружин и двух биметаллических пластинок, каждая из которых состоит из двух разных металлов с различными коэффициентами расширения.
При нагревании такой пластинки одна часть ее расширяется больше, другая - меньше, благодаря чему пластинка изгибается. На одной из пластинок намотана нагревательная обмотка. При прохождении тока через обмотку пластинка нагревается и, изгибаясь, замыкает или разрывает цепь управления.
Рис. 1.3.4 Реле времени
Электромагнитное реле (рис. 1.3.5) широко используется в схемах автоматики и телемеханики. Реле срабатывает от сравнительно слабого тока, но оно может включить электрические цепи, по которым проходит ток значительно большей силы.
Следовательно, реле является промежуточным звеном между цепью слабого тока и исполнительной цепью значительно большей мощности.
Рис. 1.3.5. Схема электромагнитного реле телефонного типа
На железный стержень (сердечник) 1 надета катушка с обмоткой 2 из медного изолированного провода. При прохождении тока через обмотку сердечник притягивает якорь 6, укрепленный на корпусе реле в шарнире 5. Притягиваясь к сердечнику, якорь замыкает электрические контакты 4, укрепленные на контактных пластинках 3. Последние соединены с исполнительной электрической цепью проводами. Если тока в обмотке реле нет, пружинящие контактные пластины сами размыкают цепь, поворачивают якорь вокруг шарнира 5 и отводят его от сердечника.
На рис. 1.3.6 приведена простейшая схема автоматического управления одним насосным агрегатом при помощи поплавкового реле уровня и магнитного пускателя. Импульс от поплавкового реле передается на агрегат без промежуточного реле. Так как реле уровня РУ работает на рабочем напряжении, то контакты его должны быть рассчитаны на силу тока в катушке магнитного пускателя, включающего электродвигатель. Система работает следующим образом. При заполнении резервуара водой поплавковое реле разрывает цепь катушки магнитного пускателя МП.
Рис. 1.3.6. Простейшая схема автоматического управления одним насосным агрегатом
Последний, сработав, размыкает три фазы МП1 МП2 и МП3 силового тока. Двигатель выключается. Когда же уровень воды опускается до нижнего предела, поплавковое реле РУ замыкает цепь катушки магнитного пускателя МП и двигатель включается в работу. В схеме предусмотрена защита двигателя от перегрузки - термическое реле РТ. Контроля за работой агрегата, а также сигнализации в схеме нет; предусмотрена установка переключателя П для переключения на ручное управление.
Такая схема может применяться лишь при небольшом расстоянии между насосом и резервуаром, когда падение напряжения и проводах, соединяющих катушку магнитного пускателя с поплавковым реле уровня, незначительно. Для работы реле на пониженном напряжении устанавливается понижающий трансформатор.
Электроконтактные реле уровня. Действие их основано на использовании электропроводимости жидкостей и сыпучих материалов. При достижении уровнем (например, жидкости) металлического электрода сопротивление между электродом и металлической стенкой сосуда резко изменяется. Это изменение сопротивления приводит к изменению тока в цепи электрод - стенка сосуда, подключенной к источнику ЭДС.
На рис. 1.3.7 изображен простой электроконтактный сигнализатор уровня. В момент достижения уровнем жидкости электрода Э ток в
Рис. 1.3.7. Электромагнитный сигнализатор уровня
Управляющей цепи база - эмиттер становится таким, что транзистор переходит в режим насыщения и лампа Л1 (12 В, 105 мА) зажигается, сигнализируя о наполнении емкости. Вместо лампы может быть использовано любое реле с Iсраб=100 мА. Контакты реле могут замыкать цепь привода исполнительного механизма, регулирующего уровень.
Триггерное реле уровня (рис. 1.3.8). Датчики реле питаются переменным током. В реле применен несимметричный триггер с эмиттерной связью на транзисторах Т1 и Т2.
При уровне жидкости ниже электродов датчиков цепь переменного тока, составной частью которой является жидкость, разомкнута. Транзистор Т2 открыт и ток эмиттера создает падение напряжения на резисторе R2, поддерживающее транзистор Т1 в закрытом состоянии (первое устойчивое состояние триггера). Реле Р (типа КМ, Iсраб = 24 мА) срабатывает, контакты Р2 замыкают цепь электродвигателя насоса, подающего жидкость в резервуар. Контакты Р' разрывают цепь переменного тока нижнего датчика Дн.
Рис. 1.3.8. Триггерное реле уровня
В момент соприкосновения жидкости с электродом датчика верхнего уровня Дв его цепь переменного тока замыкается.
Выпрямленное диодами Д1 и Д2 напряжение подается на вход триггера. Он переходит во второе устойчивое состояние: транзистор Т1 открывается, а Т2 закрывается. Реле Р, отпуская якорь, замыкает контакты цепи нижнего датчика Р1 и размыкает контакты цепи управления Р2. Электродвигатель насоса останавливается.
Реле уровня, основанное на измерении проводимости по переменному току (рис. 1.3.9). Если уровень жидкости не достигает электродов Э1 и Э2, выполняются условия самовозбуждения блокинг-генератора на транзисторе Т1. Ток коллектора протекает по резистору R2 и повышает напряжение на базе транзистора Т2. На эмиттере транзистора Т2 в это время более низкое напряжение из-за делителя R3R4. Поэтому транзистор Т2 оказывается закрытым, ток в реле Р (типа PC-13, Iсраб=37 мА) не поступает.
При замыкании электродов через жидкость генерация срывается, ток коллектора транзистора Т1 протекающий через резистор R2, уменьшается, смещение базы транзистора Т2 возрастает, транзистор переходит в режим насыщения и реле Р срабатывает.
Рис. 1.3.9. Реле уровня, основанное на измерении проводимости по переменному току
Датчик прибора потребляет малую мощность (25 мВт) при малом напряжении; его можно вынести на большие расстояния (до 150 м). Изменением числа витков обмотки III сигнализатор может быть настроен для работы с жидкостями, имеющими различную проводимость.
При числе витков обмоток I, II и III, равном 120, датчик срабатывает при сопротивлении жидкости между электродами 6 кОм и менее.
Для изготовления трансформатора можно применить магнитопровод из двух ферритовых колец марки М2000НМ с наружным О21 и внутренним О11 мм; провод - ПЭВ-1 0,1.
Фотореле уровня. Действие его основано на измерении светового потока, падающего на фоточувствительный элемент (приемник), при изменении оптических свойств среды, находящейся в прозрачном сосуде между источником света и фоточувствительным элементом.
На рис. 1.3.10 приведена схема простого регулятора уровня, в котором используются фотодиод Д1 или фоторезистор (ФСА-1) и миниатюрная лампа накаливания Л1.
Рис. 1.3.10. Регулятор уровня
Реле настраивают таким образом, чтобы при уровне, расположенном ниже пучка света, поступающего на фотодиод, реле Р1 (типа РПН, Rобм = 5000 Ом) было включено и контакты Р11 в цепи обмотки промежуточного реле Р2 (типа МКУ-48, Rобм = 1200 Ом, Iсраб = 14 мА) разомкнуты. При подъеме уровня выше пучка света освещенность фотодиода уменьшается, реле Р1 выключается и контакты Р11 включают реле Р2. Зажигается сигнальная лампа Л2, и включается сирена. Одновременно контакты Р22 разрывают цепь питания обмотки магнитного пускателя ПМ, управляющего работой насоса.
Тепловое реле уровня. Различие коэффициентов теплопроводности различных сред позволяет построить тепловые реле уровня.
Реле (рис. 1.3.11) представляет собой неуравновешенный мост, в два плеча которого включены термочувствительные элементы R8 и R9. Каждый из них состоит из пяти последовательно включенных терморезисторов ММТ-4, КМТ-4 или КМТ-10 с сопротивлениями по 2 кОм (при t=20°С).
Рис. 1.3.11. Тепловое реле уровня
Помещенные в жидкость, уровень которой регулируется, термочувствительные элементы нагреваются до температуры, несколько большей, чем температура жидкости. Когда резисторы R9 и R8 находятся в жидкости, мост сбалансирован и реле Р выключено. Как только уровень станет ниже термочувствительного элемента R8, его температура возрастает (сопротивление R8 при этом уменьшается), мост разбалансируется и реле Р сработает, включив сигнализацию и промежуточное реле привода насоса.
Сопротивление резистора R1 подбирается в зависимости от среды, уровень которой регулируется, и от типа выбранного реле (например, можно применить реле РЭС-15, имеющее Rобм = 160 Ом).
Реле уровня жидкостей с относительной диэлектрической проницаемостью ?= 2,0?3,5 (масло, дизельное топливо, бензин, керосин, скипидар и т. п.) в резервуарах открытого или закрытого типа при давлении до 2 * 106 Па. Допустимая погрешность срабатывания - не более ±5 мм относительно оси датчика.
В основе работы реле - явление резкого увеличения емкости между трубками датчика в ?2/?1| раз при заполнении их жидкостью через продольную прорезь во внешней трубке (?2 и ?1 - соответственно относительные диэлектрические проницаемости контролируемой жидкости и воздуха).
Рис. 1.3.12. Реле уровня жидкости
Датчиком уровня служит цилиндрический конденсатор (рис. 1.3.12), обкладками которого служат две коаксиально расположенные никелированные трубки, изолированные гетинаксовой шайбой.
Внешняя трубка датчика соединена с корпусом резервуара, а внутренняя - с электронным блоком при помощи коаксиального кабеля. Плечи моста электронного реле уровня состоят из ёмкости датчика Сдат, соединенного последовательно с разделительным конденсатором С5, подстроечного конденсатора С9, включенного параллельно конденсатору С6, и участков 3-4 и 4-5 обмотки II трансформатора Tp1. Суммарная емкость конденсаторов С6 и С9 выбирается средней между максимальном и минимальной емкостям датчика, т. е. Сдат min<C6+C9 <Cдат max.
Если уровень контролируемой жидкости ниже уровня установки датчика, то емкость между трубками минимальна:
Cдат minC5/Cдат min+C5<C6+C9.
В этом случае возникают обратная связь и, следовательно, генерация. Транзистор T3 открыт, на его коллекторе нулевое напряжение, а транзистор T4 закрыт, и ток в обмотке реле Р отсутствует.
Если уровень контролируемой среды достигает уровня установки датчиков, то емкость между трубками Сдат max = ?2Сдат min/?1.
Емкость последовательно соединенных Сдат max и С5 становится больше емкости параллельно включенных конденсаторов С9 и С6, т. е.
Cдат min C5/Cдат min+C569.
Возникает ООС, и происходит срыв генерации. Транзистор T3 закрывается, на его коллекторе образуется отрицательное напряжение 10 В, транзистор T4 открывается. Реле (типа РЭС-10, Rобм = 630 Ом, Iсраб = 22 мА) срабатывает, сигнализируя о превышении уровнем номинального значения. Трансформатор Тр выполнен на ферритовом кольце М2000НМ 14x6x6. Обмотка I содержит 50 витков, II - 80 + 80 и III - 25 витков провода ПЭЛШО 0,88. Диаметр внешней трубки цилиндрического конденсатора датчика уровня 26 мм, диаметр внутренней трубки 16 мм, длина трубок 120 мм, толщина 1 мм. Емкость датчика в воздухе Сдат min = 45 пФ.
2. Разработка схемы электрической принципиальной
2.1 Принципы схемотехнического конструирования устройства

Сделав анализ технического задания приходим к следующим принципам схемотехнического построения схемы насосной станции:
1) в состав схемы должен входить сетевой источник питания;
2) в состав схемы должны входить три датчика уровня жидкости, обеспечивающие контроль уровня жидкости в колодце, верхнего и нижнего уровня заполняемой ёмкости;
3) схема должна содержать устройство управления;
4) в состав схемы должен входить силовой коммутационный каскад;
5) в состав схемы должны входить элементы индикации;
6) в схеме должен быть предусмотрен ручной и автоматический режимы работы;
7) в схеме должна быть предусмотрена гальваническая развязка силового каскада от основного устройства управления, для исключения помех в цепях источника питания устройства управления при работе силового каскада.
Используя все выше изложенные принципы мной предлагается схема электрическая принципиальная станции для автоматического управления насосом, приведенная в разделе приложение на КРТС.261430.000 Э3.
2.2 Выбор элементной базы проектируемого устройства

При выборе элементной базы следует руководствоваться нижеизложенными правилами.
Выбор транзисторов
При выборе типа транзисторов должны выполнятся следующие условия:
1) Uк<Uк max. доп.;
2) Iк<Iк max. доп.;
3) Ркк max. доп.;
4) Uбэ обр. < Uбе обр. доп.;
5) Fраб. << Fграничная.
Тип проводимости транзистора должен соответствовать полярности питающих напряжений. Транзистор выбранного типа должен иметь минимально возможную цену при удовлетворяющих электрических параметрах.
Проанализировав схему электрическую принципиальную останавливаем свой выбор в пользу транзисторов типа КТ315Е, КТ361Б. Основные максимально допустимые параметры транзисторов приведены в таблице 2.3.1.
Таблица 2.3.1
Наименование
Обозначение
Значение
Постоянный ток коллек-тора, мА:
КТ315Е
КТ361Б
IK max

100
50
Постоянное напряжение коллектор-база, В:
КТ315Е
КТ361Б
UКБ max

35
20
Постоянное напряжение база-эмиттер, В:
КТ315Е
КТ361Б
UБЭ max

6
4
Постоянное напряжение коллектор-эмиттер при RБ=10кОм, В:
КТ315Е
КТ361Б
UКЭ max

35
20
Постоянная рассеиваемая мощность коллектора при Тс=-60…+25оС, мВт:
КТ315Е
КТ361Б
РК max

150
150
Температура перехода, оС:
КТ315Е
КТ361Б
Тп max

120
120
Допустимая температура окружающей среды, оС:
КТ315Е
КТ361Б
-60…+100
-60…+100
Выбор цифровых микросхем
При выборе цифровых микросхем должны выполнятся основные указанные требования.
1) Fраб.тактовая<Fтакт.max.доп.;
2) Ттакт.>Ттакт.max.доп.;
3) Логика выполняемых функций должна соответствовать логике выбранного типа микросхемы;
4) Еисм <=Еисм.пит.допустимого.
При выборе цифровых микросхем стремятся при всех прочих равных условиях выбрать микросхемы с наименьшей потребляемой мощностью.
Необходимо также следить за выполнением соотношения цена / качество.
Проанализировав схему делаем выбор в пользу микросхемы серии К561ЛА7 и К561ТМ2.
Основные характеристики микросхем:
1) Диапазон питающих напряжений +3…+15В
2) Температура окружающей среды -45…+85оС
3) Входное сопротивление 100 МОм
Выбор полупроводникового стабилизатора напряжения
При выборе полупроводникового стабилизатора напряжения должны выполнятся следующие условия:
1) Епит=Uвых.стабилизатора;
2) Iнагр.<Iвых.стаб.max.;
3) Р < Рвых.стаб.max.
Обращаем также внимание на соотношение параметра цена / качество от разных фирм изготовителей. Делаем выбор в пользу стабилизатора типа КР142ЕН8Б.
Основные электрические параметры:
1) Максимально допустимый ток нагрузки 1,5А
2) Коэффициент стабилизации 5000
3) Выходное напряжение 12В
Выбор полупроводниковых диодов
При выборе полупроводниковых диодов должны выполнятся следующие условия:
1) Uобр.<Uобрат.max.доп.;
2) Iраб.<Iраб.max.доп.;
3) Рраб.max.доп.;
4) Fраб.<Fmax.доп.
Проанализировав электрическую схему выбираем в качестве импульсных диодов, диоды типа КД522Б, КД209В, а в качестве силового диода-мост КЦ405В. Основные электрические параметры диодов приведены ниже.
Основные электрические параметры диода КД522Б:
1) Постоянное обратное напряжение 60В
2) Импульсное обратное напряжение при Q=10, при tи<=10мкс 60В
3) Средний прямой ток 100мА
4) Импульсный прямой ток при tи<=10мкс 1000мА
5) Температура перехода +125оС
6) Температура окружающей среды -55…+85оС
Основные электрические параметры диода КД209В:
1) Постоянное и импульсное обратное напряжение 800В
2) Постоянный или средний прямой ток 500мА
3) Температура окружающей среды -60…+85оС
Основные электрические параметры моста КЦ405В:
1) Максимально допустимое обратное напряжение 600В
2) Прямой ток нагрузки 1,5А
Выбор светодиодов
При выборе светодиодов должны выполнятся следующие условия:
1) Iраб<Imax.доп.;
2) Ррабmax.доп.;
3) Uраб.обратное<Uобр.max.доп.;
4) необходимый цвет свечения;
5) соотношение цена / качество.
Делаем выбор в пользу распространенных светодиодов типа АЛ307БМ с красным светом свечения.
Основные электрические параметры светодиодов АЛ307БМ:
1) Постоянное прямое напряжение не более 2В
2) Постоянное обратное напряжение 2В
3) Постоянный прямой ток 20мА
4) Температура окружающей среды -60…+70оС
Выбор конденсаторов
При выборе конденсаторов должны выполнятся следующие основные условия:
1) Uраб<Umax.доп.;
2) Рреакт.раб.<Pреакт.max.доп.;
3) tg?<tg?допустимое;
4) точность отклонения параметра (%) должна быть не хуже требуемой;
5) соотношение цена / качество.
Проанализировав необходимые требования делаем выбор в пользу электролитических конденсаторов типа К50-35, в качестве неэлектролитических конденсаторов выбираем конденсаторы типа К10-17.
Выбор резисторов
При выборе резисторов руководствуемся следующими характеристиками:
1) Ррассеяния < Ррассеяния max.доп.;
2) Величина предельного отклонения от номинала не ниже требуемой для данной электрической схемы;
3) Соотношение цена / качество.
Проанализировав эти требования делаем выбор в пользу резисторов типа МЛТ.
Основные электрические параметры резисторов типа МЛТ:
1) Относительная влажность воздуха при температуре +35оС до 98%
2) Предельное рабочее напряжение постоянного и переменного
тока от 200В (для МЛТ - 0,125) до 750В (для МЛТ-3)
3) Минимальная наработка 25000 часов
4) Срок сохроняемости 15лет
5) Температура окружающей среды -60…+70оС
Выбор оптрона
При выборе оптрона руководствуемся следующими условиями:
1) Iдиода<Iдиода max.доп;
2) Uдиода обр.<Uдиода обр.max.доп;
3) Uкэ<Uкэ max.доп;
4) Цена/качество.
Проанализировав электрические параметры оптронов, их конструктивное исполнение и стоимость делаем выбор в пользу оптрона типа 3ОТ110А.
Электрические параметры оптрона 3ОТ110А:
1) Коммутируемое напряжение 30В
2) Напряжение изоляции 100В
3) Обратное входное напряжение 0,7В
4) Постоянный входной ток при Т=-60…+35оС 30мА
5) Амплитуда выходного тока при tи<=10мкс и Т=-60…+35оС 100мА
6) Постоянный выходной ток при Т=-60…+35оС 200мА
7) Амплитуда выходного тока при tи<=10мкс 200мА
8) Средняя рассеиваемая мощность при Т=-60…+35оС 360мВт
9) Температура окружающей среды -60…+70оС
Выбор семистора
При выборе семистора должны выполнятся следующие условия:
1) Iупр.<Iупр.max.доп.;
2) Iнагр.<Imax.доп.;
3) Ррасс.max.доп.;
4) Соотношение цена / качество.
Проанализировав выше указанные требования выбираем симистр типа КУ207Г.
Основные электрические параметры семистра КУ207Г:
1) Постоянное прямое напряжение в закрытом состоянии 200В
2) Постоянное обратное напряжение 200В
3) Постоянный ток в открытом состоянии 10А
4) Постоянный ток в режиме переключения при максимальном
напряжении; ?=50Гц 5А
5) Средняя рассеиваемая мощность 20Вт
6) Постоянное обратное напряжение на управляющем электроде 1В
7) Температура окружающей среды -60…+125оС
Выбор стабилитрона
При выборе стабилитрона руководствуемся следующими условиями:
1) Iраб.<Iстаб.max.доп.;
2) Рраб<Рmax.доп.;
3) Соотношение цена / качество;
4) Uраб.<Uнапр.стабилизации..
Из анализа вышеуказанных условий выбираем стабилитрон типа Д814В.
Основные электрические параметры стабилитрона Д814В:
1) Минимальный ток стабилизации 3мА
2) Максимальный ток стабилизации 29мА
3) Рассеиваемая мощность 250мВт
4) Температура окружающей среды -60…+125оС
5) Температура перехода +125оС
Выбор разъёмных соединений и элементов коммутации
При выборе разъёмных соединений и элементов коммутации руководствуются следующими правилами.
1) ток через контактные соединения должен быть меньше максимально допустимого;
2) рабочее напряжение между контактами также должно быть меньше максимально допустимого;
3) масса, габаритные характеристики;
4) соотношение цена / качество.
Исходя из указанных условий выбираем следующие типы разъёмных соединений и коммутационных элементов:
1) тумблеры типа МТ-1 и ТВ-1;
2) разъёмы типа 2РМ3-2.
2.3 Расчет радиоэлементов по схеме электрической принципиальной

Рассчитаем резисторы в базовых и коллекторных цепях ключевых транзисторных каскадов на транзисторах VT1, VT2, VT3.
1) Задаём рабочий ток светодиодов Iр=8 (мА).
2) Напряжение насыщения транзистора VT1=0,3 (В).
3) Падение напряжения на резисторе R6 составит:
UR6пит-Uдиода-Uнас.;
UR6=12В-1,7В-0,3В=10 (В).
4) Величина сопротивления коллекторного резистора:
R6=UR6/Ip;
R6=10В/8мА=1,25 (кОм).
5) Из ГОСТированного ряда сопротивлений выбираем номинал:
R6=1,2 (кОм).
6) Определим мощность рассеивания на резисторе R6:
PR6=I2p? R6;
PR6=(8мА)2? 1,2кОм=76,8 (мВт).
Окончательно выбираем резистор R6 МЛТ - 0,125-1,2кОм±10%.
7) Определим средний ток базы транзистора VT1:
Iб=Ipср;
Iб=8мА/60=0,133 (мА).
Следовательно, чтобы обеспечить ток коллектора I=8 (мА) ток базы транзистора должен удовлетворять условию:
Iб>=0,133 (мА).
С другой стороны выходной ток логического элемента для микросхемы К561ЛА7 не должен превышать Iн<1 (мА).
Выберем величину тока базы Iб=0,75 (мА).
8) Определим величину сопротивления резистора R4:
R4=(U «лог1» -Uбэ)/Iб;
R4=(12В-0,6В)/0,75м =15,2 (кОм).
Выберем номинал из ГОСТированного ряда R4=15кОм.
9) Определяем мощность рассеивания на резисторе R4:
РR4=Iб?R4;
PR4=(0,75мА)?15кОм= ,4 (мВт).
10) Выбираем окончательно резистор R4 МЛТ - 0,125-15кОм±10%
Таким образом имеем:
R4=R5=R9=15 (кОм),
R6=R7=R10=1,2 (кОм).
Расcчитаем параметры резисторов R14.
1) Задаем рабочий ток через диод оптрона Iд=15 (мА);
2) Определяем падение напряжения на резисторе R14:
UR14=Emin - Uд-Uнас;
UR14=12В-2В - 0,3=9,7 (В).
3) Определяем величину сопротивления R14:
R14=UR14/Iд=9,7В/15мА=0,64 (кОм).
Выбираем из ГОСТированного ряда сопротивлений величину R14=620 (Ом).
4) Определяем мощность рассеяния на резисторе R14:
РR14

Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.