Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


сочинение Расчет некорректированного каскада с общим эмиттером. Расчет каскада с высокочастотной индуктивной коррекцией. Расчет каскада с эмиттерной коррекцией. Коррекция искажений вносимых входной цепью. Согласованные каскады с обратными связями. Вар. 1

Информация:

Тип работы: сочинение. Предмет: Схемотехника. Добавлен: 02.03.2002. Год: 2002. Уникальность по antiplagiat.ru: < 30%

Описание (план):


ВВЕДЕНИЕ
1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА
2. РАСЧЕТ НЕКОРРЕКТИРОВАННОГО КАСКАДА С ОБЩИМ ЭМИТТЕРОМ
3. РАСЧЕТ КАСКАДА С ВЫСОКОЧАСТОТНОЙ ИНДУКТИВНОЙ КОРРЕКЦИЕЙ
4. РАСЧЕТ КАСКАДА С ЭМИТТЕРНОЙ КОРРЕКЦИЕЙ
5. КОРРЕКЦИЯ ИСКАЖЕНИЙ ВНОСИМЫХ ВХОДНОЙ ЦЕПЬЮ
6. СОГЛАСОВАННЫЕ КАСКАДЫ С ОБРАТНЫМИ СВЯЗЯМИ
7. РАСЧЕТ УСИЛИТЕЛЬНЫХ КАСКАДОВ С ЧЕТЫРЕХПОЛЮСНЫМИ КОРРЕКТИРУЮЩИМИ ЦЕПЯМИ
8. РАСЧЕТ УСИЛИТЕЛЕЙ С ЧАСТОТНО-РАЗДЕЛИТЕЛЬ ЫМИ ЦЕПЯМИ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
РАСЧЕТ КОРРЕКТИРУЮЩИХ ЦЕПЕЙ ШИРОКОПОЛОСНЫХ УСИЛИТЕЛЬНЫХ КАСКАДОВ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ

Цель работы - получение законченных аналитических выражений для расчета коэффициента усиления, полосы пропускания и значений элементов корректирующих цепей наиболее известных и эффективных схемных решений построения усилительных каскадов на биполярных транзисторах (БТ). Основные результаты работы - вывод и представление в удобном для проектирования виде расчетных соотношений для усилительных каскадов с простой индуктивной и истоковой коррекциями, с четырехполюсными диссипативными межкаскадными корректирующими цепями четвертого порядков, для входной и выходной корректирующих цепей. Для всех схемных решений построения усилительных каскадов на БТ приведены примеры расчета.

ВВЕДЕНИЕ

В теории усилителей нет достаточно обоснованных доказательств преимущества использования того либо иного схемного решения при разработке конкретного усилительного устройства. В этой связи проектирование широкополосных усилителей во многом основано на интуиции и опыте разработчика. При этом, разные разработчики, чаще всего, по-разному решают поставленные перед ними задачи, достигая требуемых результатов. Данная работа предназначена для начинающих разработчиков широкополосных усилителей и содержит: наиболее известные и эффективные схемные решения построения широкополосных усилительных каскадов на БТ; соотношения для их расчета по заданным требованиям; примеры расчета. Поскольку, как правило, широкополосные усилители работают в стандартном 50 либо 75-омном тракте, соотношения для расчета даны исходя из условий, что оконечные каскады усилителей работают на чисто резистивную нагрузку, а входные каскады усилителей работают от чисто резистивного сопротивления генератора.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА

В соответствии с [1, 2, 3], приведенные ниже соотношения для расчета усилительных каскадов основаны на использовании эквивалентной схемы замещения транзистора приведенной на рисунке 1.1, либо на использовании его однонаправленной модели [2, 3] приведенной на рисунке 1.2.

Рисунок 1.1 - Эквивалентная схема Джиаколетто

Рисунок 1.2 - Однонаправленная модель

Значения элементов схемы Джиаколетто могут быть рассчитаны по паспортным данным транзистора по следующим формулам [1]:

=3 - для планарных кремниевых транзисторов,

=4 - для остальных транзисторов,

; ; ;

где - емкость коллекторного перехода; - постоянная времени цепи обратной связи; - статический коэффициент передачи тока в схеме с общим эмиттером; - граничная частота коэффициента передачи тока в схеме с общим эмиттером; - ток эмиттера в рабочей точке в миллиамперах.

В справочной литературе значения и часто приводятся измеренными при различных значениях напряжения коллектор-эмиттер . Поэтому при расчетах значение следует пересчитать по формуле [1]

,

где - напряжение , при котором производилось измерение ; - напряжение , при котором производилось измерение .

Поскольку и оказываются много меньше проводимости нагрузки усилительных каскадов, в расчетах они обычно не учитываются.

Элементы схемы замещения приведенной на рисунке 1.2 могут быть рассчитаны по следующим эмпирическим формулам [4]:

, , , ,

где - индуктивность вывода базы; - индуктивность вывода эмиттера; - предельное значение напряжения ; - предельное значение постоянного тока коллектора.

При расчетах по эквивалентной схеме, приведенной на рисунке 1.2, вместо используют параметр - коэффициент усиления транзистора по мощности в режиме двухстороннего согласования [2], равный:

= (1.1)

где - частота, на которой коэффициент усиления транзистора по мощности в режиме двухстороннего согласования равен единице; - текущая частота.

РАСЧЕТ НЕКОРРЕКТИРОВАННОГО КАСКАДА С ОБЩИМ ЭМИТТЕРОМ

2.1 ОКОНЕЧНЫЙ КАСКАД

Схема каскада по переменному току приведена на рисунке 1.3, где - сопротивление нагрузки; - сопротивление в цепи коллектора.
Рисунок 2.1 - Схема оконечного некорректированного каскада.
При отсутствии реактивности нагрузки, полоса пропускания каскада определяется параметрами транзистора. В соответствии с [1] коэффициент усиления каскада в области верхних частот можно описать выражением:
,
где ; (1.2)
(1.3)
; (1.4)
; (1.5)
.
При заданном уровне частотных искажений
,
верхняя частота полосы пропускания каскада равна:
=. (1.6)
Входное сопротивление каскада может быть аппроксимировано параллельной RC цепью [1]:
; (1.7)
= (1.8)
Пример 1.1. Рассчитать , , , каскада, приведенного на рисунке 1.3 при использовании транзистора КТ610А (=5 Ом, =1 Ом, =0,0083 Сим, =4 пФ, =160 пФ, =1 ГГц, =120, =0,95 А/В, =0,99, =55 мА), и условий: =50 Ом; =0,9; =10.
Решение. По известным и в соответствии с (1.2) имеем =10,5 Ом. Зная находим =13,3 Ом. По формуле (1.3) найдем =1,0310-9с. Подставляя известные и в соотношение (1.6) получим =74,9 МГц. По формулам (1.7) и (1.8) определим =196 пФ, =126 Ом.
2.2 ПРОМЕЖУТОЧНЫЙ КАСКАД
Схема каскада по переменному току приведена на рисунке 1.4, где - сопротивление в цепи коллектора; , - входное сопротивление и входная емкость нагружающего каскада.
Рисунок 2.2 - Схема промежуточного некорректированного каскада.
В соответствии с [1] коэффициент усиления каскада в области верхних частот описывается выражением:
,
где = (1.9)
(1.10)
=. (1.11)
Значения , , каскада рассчитываются по формулам (1.6), (1.7), (1.8).
Пример 2. Рассчитать , , , каскада приведенного на рисунке 1.4 при использовании транзистора КТ610А (данные транзистора приведены в примере 1.1) и условий =0,9; =10; , - из примера 1.
Решение. По известным и из (1.9) получим =10.5 Ом. Зная из (1.11) найдем =11,5 Ом. По формуле (1.10) определим =310-9 с. Подставляя известные , в соотношение (1.6) получим =25,5 МГц. По формулам (1.7) и (1.8) определим =126 Ом, =196 пФ.
3 РАСЧЕТ КАСКАДА С ВЫСОКОЧАСТОТНОЙ ИНДУКТИВНОЙ КОРРЕКЦИЕЙ

3.1 ОКОНЕЧНЫЙ КАСКАД

Схема каскада по переменному току приведена на рисунке 3.1.
Рисунок 3.1 - Схема оконечного каскада с высокочастотной индуктивной коррекцией.
При отсутствии реактивности нагрузки высокочастотная (ВЧ) индуктивная коррекция вводится для коррекции искажений АЧХ вносимых транзистором. В соответствии с [1] коэффициент усиления каскада в области верхних частот, при оптимальном значении равном
, (1.12)
описывается выражением
,
где =; (1.13)
=; 1.14)
=; (1.15)
(1.16)
и определяются выражениями (1.4) и (1.5).
При заданном , каскада равна:
=. (1.17)
Значения , каскада рассчитываются по формулам (1.7), (1.8).
Пример 3 Рассчитать , , , , каскада с ВЧ индуктивной коррекцией, схема которого приведена на рисунке 3.1, при использовании транзистора КТ610А (данные транзистора приведены в примере 1) и условий =0,9; =10; =50 Ом.
Решение. По известным и из (1.13) получим =10,5 Ом. Зная из (1.14) найдем =13,3 Ом. Рассчитывая по (1.16) и подставляя в (1.12) получим =13,710-9 Гн. Определяя к по (1.15) и подставляя в (1.17) определим =350 МГц. По формулам (1.7), (1.8) найдем =196 пФ, =126 Ом.
3.2 ПРОМЕЖУТОЧНЫЙ КАСКАД

Схема каскада по переменному току приведена на рисунке 3.2.
Рисунок 3.2 - Схема промежуточного каскада с высокочастотной индуктивной коррекцией
В соответствии с [1] коэффициент усиления каскада в области верхних частот, при оптимальном значении равном
= , (1.18)
определяется выражением:
где =; (1.19)
=; (1.20)
=; (1.21)
=, (1.22)
и определяются выражениями (1.4), (1.5). Значения , , каскада рассчитываются по формулам (1.17), (1.7), (1.8).
Пример 4. Рассчитать , , , , каскада с ВЧ индуктивной коррекцией, схема которого приведена на рисунке 3.2, при использовании транзистора КТ610А (данные транзистора приведены в примере 1.1) и условий: =0,9; =10; , - из примера 3.
Решение. По известным и из (1.19) получим =10,5 Ом. Зная из (1.20) найдем =11,5 Ом. Рассчитывая по (1.22) и подставляя в (1.18) получим =34,710-9 Гн. Определяя по (1.21) и подставляя в (1.17) определим =308 МГц. По формулам (1.7), (1.8) найдем =196 пФ, =126 Ом.
4 РАСЧЕТ КАСКАДА С ЭМИТТЕРНОЙ КОРРЕКЦИЕЙ

4.1 ОКОНЕЧНЫЙ КАСКАД

Схема каскада по переменному току приведена на рисунке 4.1.
Рисунок 4.1. Схема оконечного каскада с эмиттерной коррекцией
При отсутствии реактивности нагрузки эмиттерная коррекция вводится для коррекции искажений АЧХ, вносимых транзистором, увеличивая амплитуду напряжения эмиттер-база с ростом частоты. В соответствии с [1], модуль коэффициента усиления каскада в области верхних частот, при выборе элементов коррекции , соответствующими оптимальной по Брауде АЧХ, описывается выражением
, (1.23)
где ;
=; (1.24)
- глубина ООС; (1.25)
; (1.26)
; (1.27)
(1.28)
При заданном значении , оптимальное значение определяется выражением
. (1.29)
Подставляя и в (1.23) можно получить:
, (1.30)
где .
Входное сопротивление каскада с эмиттерной коррекцией может быть аппроксимировано параллельной RC-цепью [1].
; (1.31)
. (1.32)
Пример 5. Рассчитать , , , , каскада с эмиттерной коррекцией схема которого приведена на рисунке 4.1, при использовании транзистора КТ610А (данные транзистора приведены в примере 1) и условий =0,9; =10; = 50 Ом.
Решение. По известным , и из (5.2) получим =4,75. Подставляя в (1.25) и (1.29) найдем =4 Ом; =1,03. Рассчитывая по (1.28) и подставляя в (1.26), (1.27) получим =50,5 пФ. По известным , , , и из (1.30) определим = 407 МГц. По формулам (1.31), (1.32) найдем = 71 пФ, = 600 Ом.
4.2 ПРОМЕЖУТОЧНЫЙ КАСКАД

Схема каскада по переменному току приведена на рисунке 1.10.
Рисунок 4.2. Схема промежуточного каскада с эмиттерной
коррекцией
В соответствии с [1] модуль коэффициента усиления каскада в области верхних частот, при выборе элементов коррекции соответствующими оптимальной по Брауде АЧХ, описывается выражением (1.23). В данном случае, при заданном значении , оптимальное значение определяется из соотношения:
, (1.33)
где .
Значения , , каскада рассчитываются по формулам (1.30), (1.31), (1.32), при этом в (1.24), (1.28) и (1.31) величина заменяется на .
Пример 6. Рассчитать , , , , каскада с эмиттерной коррекцией, схема каскада приведена на рисунке 4.2, при использовании транзистора КТ610А (данные транзистора приведены в примере 1) и условий: =0,9; =10; =71,5 пФ; =300 Ом (предполагается, что нагрузкой данного каскада является входное сопротивление каскада рассчитанного в примере 5, а в коллекторе транзистора стоит резистор с номиналом 600 Ом.
Решение. По известным , и из (1.24) получим =28,5. Подставляя в (1.25) найдем =29 Ом. Зная и , по (1.33) определим =0,76. Рассчитывая по (1.28) и подставляя в (1.26), (1.27) получим =201 пФ. По известным , , , , из (1.30) определим =284 МГц. По формулам (1.31), (1.32) найдем =44 пФ; =3590 Ом.
5 КОРРЕКЦИЯ ИСКАЖЕНИЙ ВНОСИМЫХ ВХОДНОЙ ЦЕПЬЮ

5.1 РАСЧЕТ ИСКАЖЕНИЙ ВНОСИМЫХ ВХОДНОЙ ЦЕПЬЮ

Схема входной цепи каскада по переменному току приведена на рисунке 5.1, где - внутреннее сопротивление источника сигнала.
Рисунок 5.1. Схема входной цепи некорректированного каскада
При условии аппроксимации входного сопротивления каскада параллельной RC-цепью, коэффициент передачи входной цепи в области верхних частот описывается выражением [1]:
,
где = (1.34)
=; (1.35)
=;
=;
Значение входной цепи рассчитывается по формуле (1.6).
Пример 7. Рассчитать и входной цепи приведенной на рисунке 5.1, при работе каскада на транзисторе КТ610А (данные транзистора приведены в примере 1.1) от генератора с =50 Ом и при =0,9.
Решение. Из примера 1 имеем: =126 Ом, =196 пФ. По формуле (1.34) получим: =0,716, а по формуле (1.35): =710-9 с. Подставляя известные и в (1.6) найдем: =11 МГц.
5.2 РАСЧЕТ ВХОДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ

Из приведенных выше примеров расчета видно, что наибольшие искажения АЧХ обусловлены входной цепью. Для расширения полосы пропускания входных цепей в [5] предложено использовать схему.
Работа схемы основана на увеличении сопротивления цепи с ростом частоты для компенсации шунтирующего действия входной емкости каскада. При заданном значении и выборе , соответствующей оптимальной по Брауде АЧХ, модуль коэффициента передачи входной цепи описывается выражением:
,
где ; (1.42)
;
;
;
; (1.43)
, - входное сопротивление и входная емкость каскада.
При заданном значении , входной цепи равна:
, (1.44)
где .
Пример 1.8. Рассчитать , , входной цепи приведенной на рисунке 5.2 при работе на каскад с параметрами, данными в примере 7, при уменьшении за счет введения в пять раз по сравнению с некорректированной входной цепью, и при =50 Ом, =0,9.
Решение. Из примера 7 имеем: =126 Ом; =196 пф; =0,716. Из соотношения (1.42) и условий задачи получим: =10 Ом. Подставляя в (1.43) найдем: =7,54 нГн. Подставляя результаты расчета в (1.44), получим: =108 МГц. Используя соотношения (1.6), (1.41) определим, что при простом шунтировании каскада резистором =10 Ом каскада оказывается равной 50 МГц.
5.3 РАСЧЕТ КАСКАДА С ПАРАЛЛЕЛЬНОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ

Для исключения потерь в усилении, обусловленных использованием входной корректирующей цепи (см. раздел 5.2), в качестве входного каскада может быть использован каскад с параллельной ООС, схема которого приведена на рисунке 5.3.
, - входные сопротивление и емкость нагружающего каскада
Рисунок 5.3 Схема каскада с параллельной ООС
Особенностью схемы является то, что при большом значении и глубокой ООС ( мало) в схеме, даже при условии =0, появляется выброс на АЧХ в области верхних частот. Поэтому расчет каскада следует начинать при условии:=0. В этом случае коэффициент усиления каскада в области верхних частот определяется выражением:
, (1.45)
где ; (1.46)
;
.
При заданном значении , каскада равна:
, (1.47)
где .
Формулой (1.47) можно пользоваться в случае, если . В случае схема имеет выброс на АЧХ и следует увеличить .
Если окажется, что при меньше требуемого значения, следует ввести . В этом случае коэффициент усиления каскада в области верхних частот описывается выражением:
, (1.48)
где;
;
;
;
Оптимальная по Брауде АЧХ достигается при условии:
. (1.50)
При заданном значении , каскада может быть найдена после нахождения действительного корня уравнения:
,(1.51)
где .
При известном значении , равна:
. (1.52)
Пример 9. Рассчитать ,, каскада с параллельной ООС схема которого приведена на рисунке 5.3, при использовании транзистора КТ610А (данные транзистора приведены в примере 1.1), при =50 Ом; =0,9; =1,5 и при работе на каскад рассчитанный в примере 6 (=3590 Ом, =44 пФ).
Решение. По известным и из (1.46) определим =75 Ом. Рассчитывая и формулы (1.45) найдем, что . Поэтому следует увеличить значение . Выберем =6. В этом случае из (1.46) определим: =150 Ом. Для данного значения . По формуле (1.47) получим: =76 МГц. Для расширения полосы пропускания рассчитаем по (1.50): =57 нГн. Теперь найдем действительный корень уравнения (1.51): , и по (1.52) определим =122 МГц.
6 СОГЛАСОВАННЫЕ КАСКАДЫ С ОБРАТНЫМИ СВЯЗЯМИ
6.1 РАСЧЕТ КАСКАДА С КОМБИНИРОВАННОЙ ООС

Схема каскада по переменному току приведена на рисунке 6.1 [6].
Рисунок 6.1 Схема каскада с комбинированной ООС
Достоинством схемы является то, что при условиях:
и (1.53)
схема оказывается согласованной по входу и выходу с КСВН не более 1,3 в диапазоне частот, где выполняется условие 0,7. Поэтому практически отсутствует взаимное влияние каскадов друг на друга при их каскадировании [6].
При выполнении условий (1.53), коэффициент усиления каскада в области верхних частот описывается выражением:
, (1.54)
где ; (1.55)
;
;
;
.
Из (1.53), (1.55) не трудно получить, что при известном значении величина резистора определяется выражением:
. (1.56)
При заданном значении , каскада равна:
, (1.57)
где .
В [8] показано, что при выполнении условий (1.53) ощущаемое сопротивление нагрузки транзистора, каскада с комбинированной ООС, равно , а максимальная амплитуда выходного сигнала каскада уменьшается на величину: , что следует учитывать при выборе рабочей точки транзистора.
Пример 10. Рассчитать , , каскада приведенного на рисунке 6.1 при использовании транзистора КТ610А (данные транзистора приведены в примере 1) и условий: = 50 Ом; =0,9; =3.
Решение. По известным и из (1.56) получим: =200 Ом. Подставляя в (1.53) найдем: =12,5 Ом. Рассчитывая коэффициенты , формулы (1.54) и подставляя в (1.57) определим: =95 МГц.
6.2 РАСЧЕТ УСИЛИТЕЛЬНЫХ КАСКАДОВ С ПЕРЕКРЕСТНЫМИ ООС

Схема усилительных каскадов по переменному току приведена на рисунке 6.2 [9].
Рисунок 6.2 Схема усилительных каскадов с перекрестными ООС


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.