Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Курсовик Анализ методов расчета источника вторичного электропитания, который является обязательным функциональным узлом практически любой электронной аппаратуры. Особенности работы магнитопровода силового трансформатора и схемы управления силовым транзистором.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 29.04.2010. Год: 2010. Уникальность по antiplagiat.ru: < 30%

Описание (план):


ГОУ ВПО
ДВГУПС
Кафедра ”ЭТЭЭМ”
КУРСОВОЙ ПРОЕКТ
На тему: ”Расчет импульсного источника вторичного электропитания”.
КП. 61352. 000. 648.
Выполнил: Щербин Р.В.
Проверил: Сайфутдинов Р.Х.
Хабаровск 2009
Содержание

    Введение
    1. Теоретические сведения
      1.1 Обобщенная структурная схема "безтрансформаторног " ИВЭП
      1.2 Функциональная схема практического "безтрансформаторног " ИВЭП
      1.3 Сетевой выпрямитель с фильтрами
      1.4 Силовой каскад ОПНО
      1.5 Работа магнитопровода силового трансформатора
      1.6 Работа схемы сравнения
      1.7 Схема управления силовым транзистором
    2. Расчет "безтрансформаторног " ИВЭП. Исходные данные
      2.1 Определение максимального и минимального значений постоянного напряжения питания силового каскада
      2.2 Выбор типа диодов VDc1…VDc4 сетевого выпрямителя
      2.3 Определение емкости сглаживающего конденсатора сетевого выпрямителя конденсатора Снч:
      2.4 Определение максимальной скважности управляющих импульсов
      2.5 Расчёт силового трансформатора TV
      2.6 Выбор выпрямительного диода VDв
      2.7 Определение параметров элементов схем управления
      2.8 Определение параметров элементов демпфирующей цепи силового каскада
      2.9 Определение КПД источника вторичного питания
    Заключение
    Список используемой литературы
    Введение

    Источник вторичного электропитания (ИВЭП) является обязательным функциональным узлом практически любой электронной аппаратуры. Как электротехническое устройство он обеспечивает постоянными питающими напряжениями от единиц до десятков-сотен вольт транзисторные устройства и интегральные схемы.
    До настоящего времени большая часть источников электропитания представляет собой громоздкие электротехнические устройства, осуществляющие силовое преобразование энергии напряжения на относительно низкой частоте - 50 Гц, а регулирование или стабилизация выходного напряжения производится линейными методами. Это обстоятельство приводит к большой материалоемкости и низкой эффективности ИВЭП.
    В настоящее время в современной электронной аппаратуре практически отсутствуют подобные низкоэффективные источники электропитания. Произошел переход на высокочастотные импульсные методы преобразования энергии переменного и постоянного напряжений, что позволило снизить расход электротехнической меди в несколько десятков раз и принципиально исключить использование трансформаторной стали. Удельная выходная мощность современных ИВЭП составляет (200…500) Вт/кг, а КПД достигает (70…90)% в широком диапазоне изменения первичного напряжения. В данном курсовом проекте предлагается рассчитать источник вторичного электропитания (ИВЭП) с выходным напряжением , максимальным током нагрузки и КПД не менее 0,72, с диапазоном изменения действующего значения первичного напряжения, при котором ИВЭП сохраняет номинальные параметры , а также с другими исходными данными для расчёта импульсного источника электропитания согласно заданию преподавателя.
    1. Теоретические сведения

    1.1 Обобщенная структурная схема "безтрансформаторног " ИВЭП

    Под "безтрансформаторным понимается ИВЭП, первичным у которого является переменное напряжение низкой частоты, а выходными (напряжениями нагрузки) являются постоянные напряжения, требующиеся для питания электронной аппаратуры.
    Обобщенная структурная схема "безтрансформаторног " ИВЭП приведена на рис. 1.
    Рис. 1. Обобщенная структурная схема "безтрансформаторног " ИВЭП.
    Здесь обозначения соответствуют: - действующее значение переменного напряжения, выражаемого функцией , где -максимальное значение функции, , Сет.В- сетевой выпрямитель с выходным напряжением ; Сгл.Ф- низкочастотный сглаживающий фильтр; ИПН - импульсный преобразователь постоянного напряжения, на вход которого подается постоянное напряжение . Выходные постоянные напряжения ИПН: , поступают в приборы-потребители (электронные приборы - нагрузка для ИВЭП).
    В курсовом проекте принято, что первичным для ИВЭП является переменное напряжение и частоты . Однако это не исключает правомерности изложенных положений и применимости приведенных уравнений для любых других значений напряжения .
    Величины выходных напряжений ИВЭП определяются выбранной для электронных приборов элементной базой.
    Функции структурных узлов Сет.В и Сгл.Ф заключаются в выпрямлении переменного напряжения сети и его последующем сглаживании фильтром, который практически во всех случаях является емкостным. Импульсный преобразователь ИПН предназначен для выполнения двух функций.
    Первая из них заключается в электрической изоляции выходных напряжений от от первичного . Она обеспечивает выполнение требований техники безопасности и помехоустойчивости функционирования электронной аппаратуры. Эту функцию может реализовать только индуктивный трансформатор.
    Вторая функция ИПН заключается в необходимости стабилизации напряжений при изменениях первичного напряжения , мощности нагрузок и воздействии различного рода эксплуатационных дестабилизирующих факторов. Поэтому в качестве ИПН используются преобразователи с регулированием выходных напряжений при помощи схем управления, использующих широтно-импульсную, частотно-импульсную или другой вид модуляции.
    1.2 Функциональная схема практического "безтрансформаторног " ИВЭП

    Функциональная схема "безтрансформаторног " ИВЭП с использованием ОПНО приведена на рис. 2.
    Рис.2. Функциональная схема ИВЭП.
    Здесь обозначения функциональных узлов соответствуют: ФВФ -- блок высокочастотных и низкочастотных фильтров и сетевой выпрямитель; TV -силовой трансформатор; S - силовой ключ, включаемый и выключаемый схемой управления СУ (сигнал ) и осуществляющий коммутацию постоянного напряжения в цепи первичной обмотки трансформатораTV; УГР - устройство гальванической развязки, выполняющее функции электрической изоляции аналогового сигнала управления; СС - схема сравнения, осуществляющая сравнение выходного напряжения ОПНО с внутренним опорным напряжением СС и вырабатывающая на этой основе аналоговый сигнал для передачи на УГР. Напряжение вторичной обмотки трансформатора TV выпрямляется диодом VDB, и через фильтр Cф1, Сф2, Lф поступает на выход ИВЭП - UH (в нагрузку). Параллельно первичной обмотке включена демпфирующая цепь, осуществляющая снижение амплитуды импульсов перенапряжения на ключе S, возникающих при его размыкании.
    1.3 Сетевой выпрямитель с фильтрами

    На рис. 3. приведена схема сетевого выпрямителя ФВФ с фильтрующими элементами.
    Рис.3. Схема сетевого выпрямителя ФВФ.
    Мостовой выпрямитель напряжения сети выполнен на диодах . На его выходе включен емкостной фильтр, в качестве которого используется конденсатор , сглаживающий низкочастотные пульсации выпрямленного напряжения. Резистор является нелинейным сопротивлением, ограничивающим пусковой ток заряда конденсатора при первоначальном подключении ИВЭП к сети . Необходимость введения этого резистора в схему ИВЭП вызвана тем, что емкость конденсатора велика (составляет десятки-сотни микрофарад), и его заряд, например, в момент времени, когда мгновенное значение синусоиды сетевого напряжения равно максимальному значению обусловит появление импульса тока большой амплитуды. Практически, если не принимать специальных мер, амплитуда может значительно превышать установившееся значение тока, потребляемого ИВЭП от сети, достигая величин в десятки, иногда сотни, ампер. Сопротивление нелинейного резистора в холодном состоянии (в момент включения ИВЭП) максимально. По мере заряда конденсатора резистор разогревается, его сопротивление уменьшается и после полного заряда сопротивление практически не влияет на энергетические характеристики ИВЭП.
    Кроме низкочастотного фильтра () в схеме выпрямителя, рис. 3, имеются высокочастотные фильтры. Во входной цепи установлен фильтр, состоящий из двухобмоточного дросселя и конденсаторов . Дроссель и конденсатор Свч3 ослабляют синфазные ВЧ помехи, которые существуют между питающими проводниками ИВЭП, а конденсаторы и снижают уровень дифференциальных ВЧ помех, которые возникают и распространяются между корпусом прибора и питающими проводниками. Для ВЧ помех проводник Общ.ВЧ является эквипотенциальным для всех высокочастотных напряжений, возникающих в ИВЭП или приходящих извне от сети. В общем случае этот проводник рекомендуется соединять, если это возможно, с соответствующим качественным внешним заземлением.
    Как известно, нагрузочная характеристика выпрямителя с емкостным фильтром имеет падающий вид, т.е. с увеличением тока нагрузки напряжение уменьшается, а с уменьшением тока нагрузки - увеличивается. Максимальное значение напряжения, которое имеет место при холостом ходе выпрямителя, определяется:
    Т.е. Епмакс больше, чем действующее значение напряжения сети ЕС.Д.
    Выпрямители с емкостным фильтром обладают и недостатками: 1) падающий характер нагрузочной характеристики является недостатком выпрямителя, так как появляется дополнительная составляющая нестабильности напряжения на входе импульсного преобразователя; 2) существенно несинусоидальной и импульсной форме тока, потребляемой им от сети переменного напряжения. Причем, чем больше емкость конденсатора , то есть чем выше качество сглаживания напряжения (меньше величина пульсаций ), тем меньше длительность импульсов потребляемого тока и больше их амплитуда.
    Средний ток, протекающий через каждый из диодов выпрямительного моста VDc1,…,VDc4, находится:
    Максимальное обратное напряжение, прикладываемое к диодам сетевого выпрямителя VDc1,…,VDc4, равно Епмакс, т.о.
    Емкость конденсатора сглаживающего низкочастотного фильтра:
    Наличие в ИВЭП пускового тока требует, чтобы в выбранных диодах нормированная величина максимально допустимого импульсного тока превышала среднее значение в 5...20 раз. В справочных данных для выпрямительных диодов этот параметр приводится как одноразовый импульс прямого тока.
    При выборе элементов рассматриваемых электронных схем следует учитывать, что для надежной работы ИВЭП требуется применение коэффициента запаса по средним и импульсным электрическим параметрам .
    1.4 Силовой каскад ОПНО

    Принципиальная схема силового каскада ОПНО "бестрансформаторног " ИВЭП приведена на рис. 4.
    Рис. 4. Схема силового каскада ОПНО "безтрансформаторног " ИВЭП.
    Здесь функции силового ключа S (см. схему рис. 2.) выполняет МДП-транзистор . Полевой транзистор с изолированным затвором индуцированным каналом n-типа. Временные диаграммы его работы показаны на рис.5.
    Рис. 5. Временные диаграммы работы силового каскада.
    Режим работы силового каскада по заданию - режим прерывистых токов (ПТ), характеризуется наличием нулевого значения тока в индуктивности на определенных интервалах времени функционирования преобразователя, что показано на временных диаграммах рис. 5.
    Как видно из временных диаграмм , на рис. 5, в режиме ПТ разряд индуктивности вторичной обмотки трансформатора TV происходит за время
    (1.1)
    На интервале времени ток обмотки равен нулю. Это определяет сущность термина “прерывистый” ток, означающий прерывание тока индуктивности намагничивания трансформатора TV на протяжении определенных интервалов времени работы Т силового каскада, т. е. наличие тока вторичной обмотки трансформатора, а следовательно, и диода VDв , равно нулю.
    В режиме ПТ для этапа времени накопления тока в индуктивности первичной обмотки справедлива схема рис.6.
    Рис.6. Схема силового каскада на этапе накопления тока в индуктивности.
    Функция изменения тока, протекающего через индуктивность :
    (1.2)
    Процессы разряда индуктивности определяются схемой рис.7.
    Рис. 7. Схема силового каскада на этапе разряда индуктивности в нагрузку.
    Условие выполнения режима ПТ имеет следующий вид:
    (1.3)
    Существенным отличием режима ПТ является принципиальное отсутствие в силовом каскаде коммутационных импульсов тока и . Это определяет увеличение надежности работы ИВЭП и повышение КПД и позволяет применять более высокие частоты преобразования по сравнению с режимом работы силового каскада в режиме НТ, однако, требует увеличения емкости конденсаторов и .
    Рассмотрим работу демпфирующей цепи (ДЦ на схеме рис. 2). Она состоит из резистора , конденсатора и диода , которые показаны на схеме рис. 4. Необходимость введения этой цепи обусловлена следующими характерными процессами работы силового каскада.
    Трансформатор TV обладает индуктивностью рассеяния Ls обмоток. Перед выключением транзистора VTS (в конце интервала времени ) ток его стока был равен . Этот же ток протекал и через индуктивность Ls. Упрощенная эквивалентная схема интервала времени запирания VTS, то есть размыкания ключа S приведена на рис. 8.
    Рис.8. Эквивалентная схема силового каскада на этапе демпфирования импульса напряжения сток-исток.
    Здесь полярность напряжения на индуктивности LS, указанная без скобок и соответствующая показанному направлению увеличивающегося тока стока, соответствует открытому (предыдущему) состоянию ключа S (транзистора VTS). После размыкания ключа S увеличение тока стока прекращается и в соответствии с законом самоиндукции полярность напряжения на индуктивности LS меняется на обратную, что показано на схеме рис. 8 знаками в скобках. Если в схеме отсутствует демпфирующая цепь, то в момент времени запирания транзистора на ключе образуется импульс напряжения, амплитуда которого в идеальном случае будет равна бесконечности.
    После смены полярности напряжения на индуктивности LS открывается диод VDД и накопленная в ней энергия поглощается конденсатором СД, обеспечивая снижение амплитуды импульса напряжения на переходе сток-исток транзистора VTS. В зависимости от величины емкости и напряжения , которое существовало на конденсаторе СД до момента времени размыкания ключа S, амплитуда импульса будет различной. Очевидно, что чем больше емкость СД и меньше напряжение , тем меньше будет амплитуда импульса напряжения . С точки зрения повышения надежности работы преобразователя требуется снижение амплитуды этого импульса, однако, это требует определенных энергетических затрат, что снижает КПД ИВЭП.
    По окончании процесса разряда индуктивности Ls диод VDД запирается, так как напряжение на обмотке становится равным . После этого напряжение сток-исток VTS принимает значение
    (1.4)
    Так как в последующем напряжение на конденсаторе СД меньше, чем на обмотке , то он разряжается на резистор RД. Для наиболее эффективной работы демпфирующей цепи величина сопротивления RД должна быть такой, чтобы к концу интервала времени обеспечивался разряд конденсатора СД до напряжения
    1.5 Работа магнитопровода силового трансформатора

    Трансформатор силового каскада является специфическим индуктивным элементом, характерные особенности работы которого определяются выбранным типом импульсного преобразователя - ОПНО.
    С точки зрения трансформации напряжений и токов из первичной обмотки во вторичную трансформатор TV схемы рис. 4 представляется классическим трансформатором, к которому применимы рассматриваемые в курсе ТОЭ формулы приведения.
    В классическом трансформаторе тока или напряжения, включая импульсный, индуктивность намагничивания является паразитной и для повышения энергетической эффективности трансформатора она должна быть максимальной, так как при этом уменьшается бесполезный ток холостого хода.
    Магнитопровод трансформатора силового каскада ОПНО работает в режиме однополярного намагничивания, как и импульсный трансформатор. Одновременно с этим, индуктивность его намагничивания должна быть не максимально возможной, а иметь строго определенную величину. Это обусловлено тем, что на этапе включенного состояния транзистора VTS амплитуда импульса тока стока определяет процессы переноса энергии из первичного источника в нагрузку и определяет уровень напряжения .
    На рис. 9 приведена график кривой намагничивания
    .
    Рис. 9. График кривой намагничивания магнитопровода.
    Как следует из временных диаграмм рис. 5 и приведенных уравнений, для требуемого функционирования силового каскада ОПНО все изменения токов обмоток и трансформатора должны иметь линейный характер, что обеспечивается при и . В общем виде индуктивность любой из обмоток трансформатора может быть выражена обобщенной функцией
    (1.5)
    где - коэффициент, определяемый геометрическими размерами сердечника магнитопровода; - магнитная проницаемость материала сердечника, геометрическая интерпретация величины которой показана на графике рис. 9.
    При изменении тока, протекающего через индуктивность, рабочая точка перемещается по кривой намагничивания, рис. 9, в направлениях, показанных стрелками. Так как трансформатор TV работает в режиме однополярного намагничивания, то рабочей областью функции является первый квадрант графика рис. 9. Для выполнения условия неизменности индуктивности L необходимо, чтобы рабочая точка при изменении магнитного поля Н, которое соответствует подмагничивающим ампервиткам , не выходила бы за пределы линейного участка функции . Это соответствует показанной на графике величине индукции . Только в этом случае обеспечивается равенство . Одновременно с этим график рис. 9 показывает, что если ампервитки , то действующая индукция будет равна Внас (индукции насыщения сердечника), обусловливая значение , а это, в соответствии определяет значение .
    Изложенное определяет необходимость применения в трансформаторе силового каскада ОПНО специальных магнитопроводов и выбора определенных режимов работы, которые существенно отличаются от традиционных, используемых при проектировании классических трансформаторов тока или напряжения. По существу процессов трансформатор силового каскада ОПНО является многообмоточным сглаживающим дросселем. Поэтому в таких трансформаторах используются сердечники с воздушным зазором или специальные магнитодиэлектрики с малой магнитной проницаемостью: .
    1.6 Работа схемы сравнения

    Как видно из схемы рис. 4, напряжение вторичной обмотки , выпрямленное диодом через сглаживающий фильтр поступает в нагрузку . Одновременно с этим напряжение с конденсатора поступает на вход аналоговой схемы сравнения . Функционально она представляет собой операционный усилитель, на один из входов которого поступает опорное напряжение, а на другой напряжение с выхода делителя напряжения . К выходу подключен светодиод первой части оптоэлектронной пары "светодиод-фототранз стор" микросхемы устройства гальванической развязки. Работа схемы сравнения с оптоэлектронной парой заключается в том, что при изменении выходного напряжения ИВЭП изменяется яркость свечения светодиода, что приводит к изменению светового потока, передаваемого на последующие функциональные узлы ИВЭП.
    При отсутствии выходного напряжения в момент первоначально пуска ИВЭП яркость свечения светодиода равна нулю, а при последующем увеличении яркость свечения увеличивается. Аналогичные изменения яркости свечения происходят и при дальнейших изменениях при воздействии различных дестабилизирующих факторов: изменении напряжения сети, тока нагрузки , температуры окружающей среды и др. Стрелками показано направление светового потока светодиода.
    Таким образом, при всех изменениях выходного напряжения ИВЭП изменяется уровень сигнала обратной связи (в данном случае светового потока), передаваемый в схему управления силовым транзистором VTS. В соответствии с этим соответствующим образом изменяются временные параметры импульсов или Т, чем реализуется свойство стабилизации напряжения .
    В схеме силового каскада рис. 4, кроме рассмотренных элементов, имеется обмотка , которая служит для обеспечения постоянным напряжением (через диод микросхемы схемы управления в установившемся режиме работы ИВЭП. Далее рассмотрим функциональное взаимодействие элементов силового каскада со схемой управления силовым транзистором.

1.7 Схема управления силовым транзистором

Схема управления силовым транзистором с применением специализированной ИМС, приведена на рис. 10. Схема содержит следующие элементы с указанием их соответствующего функционального назначения специализированной ИМС типа КР1033ЕУ15А (вывод 7 ИМС) осуществляется от стабилитрона . Существует два режима электропитания ИМС.

Первый режим используется для первоначального пуска ИВЭП. При наличии напряжения ток через стабилитрон задается резистором . В установившемся режиме ток в через резистор поступает от обмотки трансформатора TV схемы силового каскада (см. схему рис. 4, напряжение ). Сглаживание высокочастотных и низкочастотных пульсаций напряжения питания осуществляется конденсаторами и , первый из которых является керамическим, а второй - электролитическим. Общим для входных и выходных сигналов, а также для питания является вывод 5 .

Рис. 11. Схема управления силовым транзистором.

Выходом , является вывод 6 ИМС, импульсное напряжение которого через резистор поступает на затвор транзистора VTS схемы рис. 4 (сигнал ).

Отличительной особенностью схемы ОПНО является использование МДП-транзистора VDS в качестве датчика тока. Эта часть схемы управления (схема защиты) работает следующим образом. Когда на выводе 6 появляется высокий уровень напряжения, транзистор VTS открыт. Падение напряжения на нем определяется как произведение сопротивления сток-исток в открытом состоянии и тока первичной обмотки трансформатора. Напряжение в точке соединения резисторов и равно сумме падений напряжения на резисторе и диоде . С выхода делителя напряжения это напряжение поступает на вывод 3 , функциональное назначение которого заключается к контроле тока силового транзистора. Если принять, что падение напряжения на диоде при протекании через него различных токов не изменяется, то можно полагать, что напряжение на выводе 3 линейно зависит от тока первичной обмотки трансформатора. Если напряжение на этом выводе ИМС превысит заданное значение, то действие импульса напряжения прекращается ранее, чем это задается схемой управления, чем реализуется защита силового транзистора от превышения тока стока. Если при последующем включении силового транзистора ток стока опять превысит заданное значение, то процессы повторяются.

Задание требуемого порога срабатывания защиты от перегрузки выполняется соответствующим выбором сопротивлений резисторов и . Конденсатор ,является интегрирующим и предназначен для исключения ложного срабатывания схемы защиты от внешних и внутренних высокочастотных импульсов помехи.

Известно, что падение напряжения на диоде с р-п переходом зависит от температуры, что относится и к диоду . С увеличением температуры падение напряжения на нем уменьшается. Это снижает порог срабатывания схемы защиты, так как в этом случае сопротивление МДП-транзистора увеличивается, что вызывает увеличение напряжение на выводе 3 . Таким образом, уменьшение надежности работы силового транзистора при повышенной температуре компенсируется снижением порога срабатывания схемы защиты.

В случае полного короткого замыкания в нагрузке напряжения на обмотках трансформатора TV резко уменьшаются, в том числе и на обмотке (схема рис. 4). Это вызывает снижение напряжения на стабилитроне и на выводе 7 питания ниже уровня её отключения. ИМС переходит в ждущий режим работы. После этого напряжение на стабилитроне начнет увеличиваться за счет заряда конденсатора от и и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.