На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Цифровой согласованный фильтр с конечной импульсной характеристикой. Импульсная характеристика согласованного фильтра. Входной аналоговый и дискретизированный ЛЧМ сигналы. Нормированный отклик фильтра на заданный сигнал. Амплитудный спектр фильтра.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 07.07.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


6
Министерство общего и профессионального образования
Российской Федерации
УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
КАФЕДРА ТЕОРЕТИЧЕСКИХ ОСНОВ РАДИОТЕХНИКИ
реализация и анализ цф с ких
Курсовая работа


Руководитель
Коберниченко В.Г.
Студент
Литвинов А.А.
Группа Р-33072
Екатеринбург 2006 г.
1. Задание

Разработать цифровой согласованный фильтр (СФ) с конечной импульсной характеристикой и получить следующие его характеристики:
- спектр входного сигнала;
- спектральную (амплитудно-частотную) характеристику окна;
- АЧХ и ИХ фильтра;
- отклик фильтра на заданный сигнал;
- спектр выходного сигнала.
Проанализировать полученные результаты.
Параметры фильтра (Вариант №16):
Тип фильтра: согласованный с заданным сигналом фильтр;
Тип окна: Ханна;
Тип сигнала: прямоугольный радиоимпульс с несущей частотой, равной fд/4, и внутриимпульсной ЛЧМ (девиация частоты равна fд/4, база сигнала равна 30, скважность - 15).
2. Расчет фильтра

ПРИМЕЧАНИЕ: Все машинные расчеты в данном задании будут проводиться в среде MatLab v 6.5.
Так как в данном задании используется сигнал с B=20, воспользуемся формулами для ЛЧМ-сигналов с большой базой:
, где =dw - частота девиации, а = dw/ti - скорость нарастания частоты импульса.
Аналоговый сигнал имеет вид: при и 0 при .
Импульсная характеристика согласованного фильтра описывается выражением , где k - коэффициент, зависящий от физической реализации устройства (алгоритма), реализующего СФ. Для простоты анализа в дальнейшем амплитуду сигнала включим в k, и приравняем его к 1.
Далее нужно рассчитать, сколько точек необходимо для реализации согласованного фильтра. Сначала сосчитаем, сколько точек нужно для реализации радиоимпульса длиной и.: . Для заданного сигнала
Тогда fд выберем равной 120 Гц, а f0, равную fd/4 - соответственно 30 Гц. В этом случае максимальная частота импульса составит f0+df = 0.25Fd+0.25fd, т.е, ровно половину от частоты дискретизации: 60 Гц, следовательно теорема Котельникова будет выполнена и наложения спектров не наступит. Длительность аналогового импульса равна 1с, дискретного - 120 отсчетов (точек).
Дискретизированный сигнал имеет вид:
Uдискр(n) = Uаналог(n*Tд):
n = 0..Nи-1 = 0..119;
Далее построим выражение для импульсной характеристики фильтра:
Особенностью согласованного фильтра является то, что его импульсная характеристика h(t) является зеркальным отображением сигнала S(t) относительно прямой t=t0/2 (рис.1).

Рисунок
1
Это справедливо и для цифрового согласованного фильтра, поэтому:
Дискретная ИХ СФ:
n=0..Nи-1=0..119;
так как функция cos(t) - 2-периодическая. В MatLab же зеркальное отражение можно осуществить, если инвертировать массив отсчетов дискретизированного импульса, причем n нужно брать не от 0 до Nи-1, а от 1 до Nи, что обусловлено тем, что нумерация элементов в массивах в MatLаb ведется, начиная с единицы.
Полученная импульсная характеристика затем взвешивается окном Ханна:
w(n) = 0.5(1-cos(2р*(n-1)/(Nи-1))) на интервале причем данное окно необходимо сдвинуть вправо на , чтобы перекрывать весь сигнал. В MatLab это окно (уже со сдвигом) строится функцией hann(Nи).
На выходе согласованного фильтра после появления на входе сигнала, с которым он согласован, в момент окончания сигнала и должна появиться автокорреляционная функция(АКФ) этого сигнала. Аппроксимирующее выражение для нормированной АКФ ЛЧМ сигнала имеет вид:
В дальнейшем для определенности, амплитуду и дискретного и наналогового сигнала я беру равной 1.
Теперь приведу необходимые графики(для расчетов использована программа MatLAB):
1) Входной аналоговый и дискретизированный ЛЧМ сигналы S(t) и S(n):
2) Амплитудный спектр (АЧХ) входного сигнала Ws(n):
3) Вид и АЧХ окна:
4) ИХ взвешенного фильтр и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.