Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.
Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.
Результат поиска
Наименование:
Реферат Применение сейсмических средств обнаружения (ССО) при организации охраны территории: достоинства и недостатки. Преобразование сейсмических колебаний грунта в электрические сигналы с помощью сейсмоприемников. Принцип действия сейсмических средств охраны.
Информация:
Тип работы: Реферат.
Предмет: Схемотехника.
Добавлен: 27.08.2009.
Год: 2009.
Уникальность по antiplagiat.ru: < 30%
Описание (план):
22
Сейсмические средства охранной сигнализации
Москва 2007
1. Основные понятия и определения
В настоящее время при организации охраны территории, наряду с другими типами средств обнаружения, достаточно широко применяются сейсмические средства обнаружения, в которых регистрируются и затем обрабатываются сигналы, возникающие в грунте при пересечении человеком охраняемой зоны. К основным достоинствам ССО относятся отсутствие собственного излучения, возможность полного устранения демаскирующих признаков на охраняемом участке за счет установки линейной части в грунт. Сейсмические средства обнаружения, являясь пассивными средствами охраны, не обнаруживаются электронными средствами разведки. Визуальная скрытость ССО резко снижает вероятность их преодоления даже при осведомленности нарушителя о принципах работы и ТТХ средства. Сейсмические средства удобны для блокирования участков на пересеченной местности и широко применяются в целях охраны протяженных рубежей госграницы и периметров объектов.
В качестве чувствительных элементов, преобразующих сейсмические колебания грунта в электрические сигналы, чаще всего используются сейсмоприемники. Небольшие массогабаритные показатели СП в сочетании с простейшими методами обработки сигналов позволили создать портативные автономные средства блокирования малых участков местности радиусом до 5 м. Такие средства применяются для блокирования подходов к местам временного базирования спецгрупп, для обнаружения групп людей и техники на путях их вероятного передвижения.
К недостаткам ССО в целом, а в особенности тех, которые не используют сложных алгоритмов обработки, относятся низкая помехоустойчивость при заданной вероятности обнаружения в условиях воздействия разнообразных сейсмических помех.
Можно отметить, к примеру, что вероятность ложной тревоги от самолета, пролетающего на высоте 3...4 км, превышает 0,1 для большинства ССО, а в целом ряде случаев интенсивность помех бывает такова, что Р^н может снизиться до 0,5. Обычно ССО имеют среднее время наработки на ложное срабатывание Тлт= 20 ч, на 1-2 порядка уступая средствам обнаружения, имеющим активный принцип действия. Низкая помехоустойчивость ограничивает тактические возможности сейсмических средств, снижает доверие обслуживающего персонала к ССО. Однако, несмотря на это и учитывая вышеупомянутые достоинства ССО, на сегодняшний день сохраняется интерес различных служб охраны, а также разработчиков сигнализационной техники к СО данного типа. Возможности доведения ТТХ ССО до приемлемого уровня реализуются в первую очередь за счет усложнения обработки сигналов от ССО.
Принцип действия сейсмических средств охраны основан на регистрации колебаний, возникающих в грунте при перемещении человека по поверхности земли. Чувствительные элементы, установленные в поверхностном слое грунта на глубине 20...50 см, преобразуют сейсмические колебания в электрические сигналы, поступающие на вход СО. Участок местности, преодоление которого должно быть обнаружено сейсмическим средством, называется зоной обнаружения. ССО можно условно разделить на два класса: для блокирования малых участков местности и для охраны протяженных рубежей. Исходя из особенностей решаемых тактических задач, первые обычно имеют 30 близкую по форме к кругу, радиус которого не превышает 3...5 м. Протяженность зоны обнаружения ССО второго класса находится в пределах от 10 до 100 м, а ширина - от 5 до 20 м. В качестве чувствительных элементов используются точечные ЧЭ - сейсмоприемники и протяженные ЧЭ - трибокабели, эластичные трубы с жидкостью, соединенные с датчиками давления, или волоконно-оптические преобразователи.
Одним из самых распространенных вариантов ССО для протяженных рубежей является вариант, когда точечные чувствительные элементы устанавливаются в один или два ряда, образуя линейную часть сигнализационного средства на охраняемом рубеже.
В связи с тем, что на выходе ЧЭ наряду с полезным сигналом S присутствуют помехи n различного происхождения, задача обнаружения ПС носит вероятностный характер, т.е. всегда есть возможность принять помеху за полезный сигнал с вероятностью Pm или не обнаружить полезный сигнал, замаскированный помехами с вероятностью Р". Обычно в тактико-технических требованиях на сигнализационные средства задают среднее время наработки на ложное срабатывание Tm>100...500 ч и вероятность обнаружения Роб„>0,9...0,97 - Вероятностные характеристики должны сохраняться при воздействии помех от автомобильного транспорта, промышленных предприятий, самолетов, колебаний деревьев и кустарника при ветре и т.п.
В дальнейшем будем говорить о ССО применительно к участкам местности. Использование данного типа СО внутри зданий и помещений существенно затруднено ввиду того, что сооружения представляют собой сложные резонирующие структуры с регулярными и нерегулярными узлами жесткости. К тому же в зданиях, как правило, сосредоточены источники разнообразных помех: электродвигатели лифтов и холодильных установок, двери и т.д. Экспериментальные измерения, проведенные для обнаружителя с ССО в помещениях, показывают, что Тпт в этих условиях составляет не более 10...15 мин. При этом не удается обеспечить надежное обнаружение объекта на всей площади охраняемого помещения.
Определенные ограничения существуют и при использовании ССО в условиях города. Трассы движения городского транспорта с интенсивностью потока более одного автомобиля в секунду допустимы на расстояниях свыше 100 м от 30. По территории охраняемого объекта на расстояниях свыше 20 м от зоны обнаружения возможен проезд автомобилей со скоростью до 40 км/ч. Учитывая редкость одиночных проездов, допустимая вероятность ложной тревоги не превышает 0,05...0,1. Пролет реактивного или винтового самолета возможен на высоте более 1...3 км. Обычно интенсивности полетов одного самолета в час соответствует Рлт<0.002.
ССО предназначены для обнаружения человека, перемещающегося шагом и бегом со скоростью 0,5...6 м/с. Наиболее трудно выполнимо требование по вероятности обнаружения человека, движущегося с минимальной скоростью, поэтому в дальнейшем задача обеспечения надежного обнаружения объекта-нарушителя рассматривается применительно к скорости преодоления человеком 30 равной 0,5 м/с.
При установке сигнализационного средства на охраняемом рубеже желательно иметь визуально маскируемую линейную часть, не нарушать экологию окружающей среды, например, не производить засоления почвы с целью предотвращения ее замерзания и т.п. Непосредственно в зоне обнаружения допускается наличие травы, мелкого кустарника, а на расстоянии свыше 5...10 м от зоны обнаружения - крупных деревьев.
К настоящему времени для охраны объектов, периметров и рубежей разработаны комплексы охранной сигнализации, включающие в свой состав станционную аппаратуру управления и отображения информации, а также определенную номенклатуру средств обнаружения. Вновь создаваемые ССО предназначены для расширения функциональных возможностей этих комплексов, в том числе для охраны объектов, расположенных на территориях с сильно пересеченным рельефом местности, а также для блокирования таких участков, где необходима максимальная маскируемость линейной части средства обнаружения. Большое число ССО, устанавливаемых на одном объекте, приводит к необходимости повышения Тлт до 200...500 ч.
2. Основы теории возбуждения и распространения сейсмических волн
Учитывая сложность обработки сейсмосигналов, познакомимся с основами теории, рассматривающей процессы возбуждения сейсмического сигнала и его прохождения от источника до приемника. Это поможет при рассмотрении углубленного подхода к принципам создания и применения ССО.
Факторами, влияющими на характеристики динамических волн в физических средах и, соответственно, - на параметры принимаемого сигнала, являются:
условия возбуждения колебаний;
фильтрующие свойства реальных физических сред, обусловленные их характеристиками, наличием слоистых и местных неоднородностей;
фильтрующие свойства приемной аппаратуры, включая и свойства колебательной системы "приемник-почва".
Механизм возбуждения сейсмических колебаний человеком. Известно большое количество работ, посвященных различным аспектам естественного передвижения человека. Наиболее детальное исследование динамического воздействия человека на опору проведено НА Берштейном. Используя хроно-циклографическ й метод, группа исследователей под его руководством определила различные характеристики ходьбы и бега при естественных локомоциях человека. Ходьба человека по горизонтальной поверхности представляет собой непрерывный ряд последовательных приподниманий и опусканий всех частей человеческого тела.
В результате неуравновешенности вертикальных смещений общий центр масс тела испытывает периодические колебания сложной формы. В вертикальной плоскости траектория центра тяжести представляет собой кривую, близкую к синусоиде, обладающую периодом одиночного шага и амплитудой 3,5...6 см. Такие изменения положения центра тяжести определяют значения горизонтальной скорости и величины реакции на опору при движении.
При рассмотрении циклограммы видим, что снижение ОЦМТ совпадает со второй половиной опорного времени, т.е. когда опорная нога находится сзади от ОЦМТ. В этом положении нарушено равновесие, и тело начинает падать вперед. Тем временем другая нога выносится вперед и в некоторый момент создает новую опору. Теперь, за счет своей кинетической энергии, ОЦМТ поднимается вверх. И так процесс повторяется снова.
При подхватывании падающего ОЦМТ передней ногой возникает вертикальное усилие в этой ноге, которое превышает массу тела человека, так как оно должно вызвать затем ускорение тела вверх. Опорная реакция передней ноги направлена по одной прямой с инерционным противодействием ОЦМТ, т.е. вверх и назад.
После переноса тела вперед активно осуществляется второй толчок носком опорной ноги от путевой поверхности. Таким образом, кривая вертикальной составляющей опорной реакции имеет достаточно выраженную двухвершинность.
При переходе к бегу двухвершинность графика опорной реакции становится менее выраженной. Амплитуда толчков возрастает, на графике появляется интервал времени, когда отсутствует опорная реакция.
Условия возникновения и распространения сейсмического сигнала. Определение сейсмического поля в упругом полупространстве при произвольном, нормальном к поверхности, воздействии относится к решению задачи Лэмба. Краткое ее изложение сводится к следующему. На свободной поверхности X,Y полупространства, заполненного средой с постоянными Ламеи плотностью среды р, в точке 0 действует нормальная к поверхности сила FZz. Ось Z направлена внутрь среды. Требуется определить поле смещений внутри и на поверхности упругой среды.
Применяя аппарат комплексных волн, СЛ. Соболев решил эту задачу для смещения в произвольной точке, а решение, в котором используется метод неполного разделения переменных, было получено Г. Петрашенем. Это решение может быть использовано и для слоя, лежащего на упругом полупространстве.
При приеме прямых волн, особое внимание заслуживает описываемая в поверхностная волна, ослабление амплитуды которой от расстояния г изменяется как. Этот тип волны впервые открыл Релей, который показал, что вдоль плоской границы бесконечного упругого полупространства, на которой отсутствуют напряжения, могут распространяться плоские гармонические волны, затухающие с глубиной.
Релеевская плоская гармоническая волна состоит из двух неоднородных волн - продольной и поперечной, которые распространяются вдоль границы полупространства со скоростями: - скорость продольной волны; - скорость поперечной волны; С - фазовая скорость вдоль оси X. .
Решение системы уравнений поля смещений частиц упругого полупространства с учетом граничных условий относительно скоростей называется уравнением Релея:
Отношения и зависят только от коэффициента Пуассона v, характеризующего параметры среды:
Более подробно описание коэффициентов KR, gR, SR и др., характеризующих среду и параметры распространения сейсмических волн, см. в.
Из видно, что компоненты смещения сдвинуты по фазе на 90°, поэтому траектории частиц в среде представляют из себя эллипсы. Результаты, полученные для плоской гармонической релеевской волны, были обобщены для более общего случая колебаний, в том числе и для многослойного полупространства.
На практике предпринимались попытки приближенно описать распространение поверхностной волны в виде выхода линейного фильтра с коэффициентами, зависящими от расстояния между источником и приемником сейсмических волн. Такое описание для случая сферического источника в упругой среде, позволяет применять достаточно простую физическую интерпретацию результатов и получать законы распространения релеевской волны при любом воздействии.
Для амплитуды релеевской волны справедливы следующие приближенные выражения:
где UZi - амплитуда вертикальных смещений в релеевской волне, возбужденной сосредоточенной нормальной силой F0; - амплитуда вертикальных смещений в релеевской волне, возбужденной сосредоточенной тангенциальной силой F-ь К - коэффициент, зависящий от состава почвы.
График, показывающий изменение амплитуд продольной и поперечной составляющих релеевской волны, приведен на рис 3.
При распространении сейсмических волн в реальных средах, кроме уменьшения амплитуды с увеличением расстояния, происходит еще большее их ослабление, вызванное поглощением сигнала не абсолютно упругой средой.
Явления, которые происходят при поглощении, можно пояснить с помощью теории упругого последействия и теории вязкого трения.
Первая объясняет поглощения тем, что мгновенные значения напряжения определяются не только мгновенным значением деформации, но и ее значениями в предшествующее время. Теория вязкого трения опирается на предположение о наличии вязкого трения между соседними частицами среды, вследствие чего мгновенное значение напряжения дополнительно зависит от скорости деформации.
Затухание плоской гармонической волны в неидеально упругом твердом теле описывается зависимостью
где Дх - расстояние между точками измерения, у - коэффициент поглощения, а выражение для смещения ur на расстоянии г от источника определяется:
где и0 - амплитуда смещения вблизи источника. Согласно теории вязкого трения
где - частота колебаний; Ь - коэффициент затухания.
Теория упругого последействия предсказывает относительно сложный характер связи коэффициентов поглощения с частотой, но в достаточно широкой области частот зависимость близка к линейной:
где Ь2 - линейный коэффициент затухания.
Математическая модель сейсмического сигнала. Типовые реализации сигналов, возникающих при движении человека через зону обнаружения со скоростью 1 м/с и 4 м/с, приведены на рис.4. Сигналы представ и т.д.................