Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.
Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.
Результат поиска
Наименование:
Курсовик Сетевой фильтр и его использование. Параметры фильтров-удлинителей, фильтров кондуктивных электромагнитных и синфазных помех, сетевых фильтров. Варисторы. Защита от намеренного силового воздействия (НСВ) по цепям питания. Степень варисторной защиты.
Информация:
Тип работы: Курсовик.
Предмет: Схемотехника.
Добавлен: 25.01.2009.
Год: 2009.
Уникальность по antiplagiat.ru: < 30%
Описание (план):
6
Министерство образования и науки Украины
Запорожский национальный технический университет
Кафедра защиты информации ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ ПО ДИСЦИПЛИНЕ ФИЗИКО-ТЕХНИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ Сетевые фильтры электропитания
ПЗ: 29 с., 9 рисунков, 8 источников.
Обьект исследования - сетевые фильтры электропитания.
Цель работы - углубление знаний по вопросам современых методов построения сетевых фильтров, детальное рассмотрение техники защита от намеренного силового воздействия (НСВ) по цепям питания.
Сетевой фильтр необходим для достаточно дорогостоящих устройств, постоянно включенных в электрическую сеть, таких, как: холодильник, СВЧ-печь, теле-радиоаппаратура с дистанционным управлением, факсы, компьютеры и др., которые чувствительны к перенапряжениям в сети и помехам. Осветительные лампы, нагревательные приборы и некоторые пылесосы менее требовательны к качеству электропитания, и для них сетевой фильтр можно использовать в качестве удлинителя-разветвит ля электропитания.
Техногенные помехи, дроссели, резисторы, kонденсаторы, паразитная индуктивность, варисторы, фильтры электропитания, тепловой предохранитель, колебательный контур, монтаж электроснабжения, сети питания, внешние импульсные помехи СОДЕРЖАНИЕ
Реферат...……..………...2
Введение.……….………..………...4
1 Oсновные параметры фильтров-удлинителей ..……….………...6
2 Основные параметры Фильтров кондуктивных электромагнитных и синфазных помех………..………..8
3 Основные параметры сетевых фильтров. Варисторы...…….…….….……..13
4 Защита от намеренного силового воздействия (НСВ) по цепям питания. Использование сетевых фильтров...……….………...19
Выводы...………...………..27
Список литературы…….……….….28 Введение
Сетевой фильтр необходим для достаточно дорогостоящих устройств, постоянно включенных в электрическую сеть, таких, как: холодильник, СВЧ-печь, теле-радиоаппаратура с дистанционным управлением, факсы, компьютеры и др., которые чувствительны к перенапряжениям в сети и помехам. Осветительные лампы, нагревательные приборы и некоторые пылесосы менее требовательны к качеству электропитания, и для них сетевой фильтр можно использовать в качестве удлинителя-разветвит ля электропитания.
Импульсы, возникающие в результате подключения (отключения) большого количества потребителей, работа промышленного оборудования и городского электротранспорта, световая реклама, аварии на подстанциях, выбросы тока - это техногенные помехи. Природные помехи: грозовые разряды и удары молнии вблизи кабелей наружной электросети и линий электропередач. Постоянное воздействие электромагнитных импульсов может привести как к полному выходу аппаратуры из строя, так и к потере накопленной информации. Первым уровнем защиты и являются сетевые фильтры.
Сетевой фильтр способен предотвратить частые ретрейны и обрывы связи связанные с незначительным присутствием высокочастотных помех в сети питания модема или факса в связи, с чем повысить производительность передачи данных, которая так необходима при междугородних звонках.
Причиной помех телевидению во многих случаях является недостаточная высокочастотная развязка выходящих из передатчика проводов и особенно провода сетевого питания. Высокочастотная энергия передатчика, попадая в питающую сеть, подводится через провода этой сети к телевизорам и радиоприемникам, включенным в нее, а также излучается в пространство. Для высокочастотной развязки проводов, выходящих наружу от передатчика, применяют дроссели, резисторы и конденсаторы, образующие цепи, шунтирующие на землю высокочастотные сигналы в проводах или образующие заградительные фильтры для высоких частот. В зависимости от номиналов применяемых деталей и частоты сигнала уровень ослабления меняется. Существенно улучшает развязку на высоких частотах применение проходных конденсаторов вместо обычных или конденсаторов опорного типа, поскольку у проходных конденсаторов паразитная индуктивность сведена к минимуму. При выборе типа проходного конденсатора необходимо учитывать допустимый ток, пропускаемый внутренним проводом конденсатора.
Хорошую блокировку проводов по высокой частоте можно обеспечить, если поместить их в заземленный экран. Экран создает распределенную емкость вдоль провода и таким образом шунтирует провод на высокой частоте по всей длине, Увеличить сопротивление провода на высокой частоте можно путем увеличения его погонной индуктивности. Для этого на провод одевают ферритовые кольца соответствующего типоразмера с магнитной проницаемостью порядка нескольких сот. Если требуется локально увеличить индуктивность провода, его несколько раз продевают сквозь ферритовое кольцо, образуя таким образом тороидальную катушку с необходимой индуктивностью. Осуществляя развязку сетевого провода передатчика, следует помнить, что ток в нем может быть значительной величины. Это накладывает дополнительные требования к катушкам фильтра, индуктивность которых не должна существенно изменяться под действием тока. В противном случае характеристики фильтра будут меняться в зависимости от нагрузки. Это относится к катушкам с сердечниками из магнитных материалов. Для исключения влияния тока подмагничивания катушку наматывают в два провода, в результате чего магнитное поле тока компенсируется.
Но все эти меры защиты являются далеко не идеальными и для того чтобы получить почти идеальное напряжение питания необходимо использовать специальное устройство сетевой фильтр. 1Oсновные параметры фильтров-удлинителей
Сечение жилы подводящего сетевого провода.
По проектным нормам допускаемая длительная токовая нагрузка в переносных шланговых трёхжильных кабелях при сечении жилы 0,75мм.кв.-14А, 1мм.кв.-16А.
Длина подводящего сетевого провода.
Обычная длина - 1,8 метра. Принято считать наиболее удобной длинну 1,9 метра и 3,1метра.
Величина тока срабатывания теплового предохранителя.
По ТУ на всех фильтрах- удлинителях декларируется максимальный ток 10 А. Величина тока срабатывания предохранителя зависит от величины перегрузки по току и времени воздействия, и часто 10 А предохранитель имеет ток срабатывания 12-16 А.
Количество предохранителей, их тип.
Для большей надёжности некоторые производители, кроме теплового предохранителя в цепи фазы, ставят в цепь фазы предохранитель на основе металлоорганических полупроводников, а в цепь нейтрали плавкий предохранитель. Степень варисторной защиты.
Она определяется рассеиваемой энергией варисторов, при которой они не разрушаются. В спецификации большинство производителей указывают суммарную энергию разрушения всех варисторов, что неправильно. Оценить энергию варисторов можно по их ТУ или ориентировочно по их размеру, либо по декларируемой энергии на удлинитель и количеству варисторов. Энергия, поглощаемая варисторами, зависит от его геометрических размеров, рабочего напряжения, длительности воздействия импульса. Наиболее широко распространены варисторы, диаметр которых равен 8,10,14,18 мм. При рабочем среднеквадратичном напряжении (СКН) 275 В их энергия соотносится как 12,36,63,104 Дж. Если выбрать рабочее СКН, например,320 В для тех же условий, то энергия изменится до15,44,77,120Дж Длительность воздействия импульса принимается 1000 мксек при фронте 10 мксек. Дополнительные устройства в цепях защиты.
Предохранители служат для исключения перегорания варисторов при перегрузке. Индикация исправности защиты (светодиод). Если предохранители или провода в цепи варисторов сгорели - светодиод не горит.
Газовые разрядники служат для увеличения степени варисторной защиты. Этот элемент повышает энергию разрушения варисторов фаза-земля, нейтраль-земля, при ударе молнии в фазу и нейтраль, так как в начале срабатывает газовый разрядник, а затем варистор. Емкостные фильтры.
Емкостные фильтры служат для подавления помех с помощью шунтирования. Чем больше ёмкость фильтрующих конденсаторов (до определённого предела), тем лучше. Индуктивные фильтры.
Индуктивные фильтры служат для подавления помех последовательным способом (включением большого сопротивления). Основные требования к проводу, как и для сетевого шнура, т.е. плотность тока через провод должна быть менее чем 10А/кв.мм., чем больше размер катушки, тем больше индуктивность, тем лучше. Наличие феррита улучшает свойства индуктивности. Тороидальные ферритовые сердечники предпочтительнее линейных, хотя и более трудоёмкие в изготовлении. Индикатор правильности подключения фазы.
Это устройство позволяет использовать однополюсный выключатель в фазной цепи. Если используется двухполюсный выключатель тогда особого смысла в этом устройстве нет. Кроме того, это устройство требует трёхконтактную сетевую розетку, а в нашей стране большинство розеток двухконтактные. Укладчик кабелей, вешалка.
Стоимость накладывает ограничения на наличие укладчика кабелей. Вешалка выполняется в виде отверстий в корпусе.
Розетки. Обычно от 4 до 6.
Традиционно 5 - все евророзетки. Ориентироваться на старый "советский" стандарт бессмысленно, т.к. новые устройcтва с такими вилками не выпускаются. Выходной фильтр
Выходной фильтр служит фильтром электромагнитных помех и предотвращению их попадания в нагрузку.
Чем хуже характеристики конденсатора входного фильтра, тем больше блок из силовой линии будет забирать энергию ВЧ тока, что приведет к возникновению кондуктивных синфазных электромагнитных помех.
Вторым основным источником шума является контур, который состоит из выходных диодов, конденсатора выходного фильтра и вторичных обмоток трансформатора. Между этими компонентами протекают трапецеидальной формы токи большой амплитуды. Конденсатор выходного фильтра и выпрямитель необходимо размещать как можно ближе к трансформатору; для минимализации излучаемого тока. Этот источник также создает синфазные кондуктивные помехи, главным образом, на выходных каскадах источника питания. 2 Основные параметры Фильтров кондуктивных электромагнитных и синфазных помех
Существует два типа входных силовых шин. Силовые шины постоянного тока - это однопроводные силовые соединения, второе плечо питания которых формирует заземление. Другим типом входного соединения является двух или трехпроводная система питания от сети переменного тока. Проектирование фильтра электромагнитных (далее ЭМ) помех для систем постоянного тока осуществляется в основном в виде простого LC-фильтра. Все помехи между одним силовым проводом и соединением через “землю” называются синфазными. Фильтр постоянного тока, значительно более сложный, поскольку учитывает паразитарные характеристики компонентов.
Входной фильтр кондуктивных ЭМ помех предназначен для удержания ВЧ кондуктивного шума в середине корпуса. Фильтрация линий входа/выхода также важна для защиты от шума внутренних схем (например микропроцессоров, АЦП, ЦАП).
Проектирование фильтра синфазных помех.
Фильтр синфазных помех фильтрует шум, который создается между двумя линиями питания (H1 и H2). Схема такого фильтра приведена ниже на рис.2.1
Рисунок 2.1 - Схема фильтр синфазных помех
В фильтре синфазных помех обмотки катушки индуктивности находятся в фазе, но переменный ток, который протекает через эти обмотки - в противофазе. В итоге, для тех сигналов, которые совпадают или противоположны по фазе на двух линиях электропитания, синфазный поток внутри сердечника уравновешивается.
Проблема проектирования фильтра синфазных помех заключается в том, что при высоких частотах (когда собственно и нужная фильтрация) идеальные характеристики компонентов искажаются через паразитарные элементы. Основным паразитарным элементом является межвитковая емкость самого дросселя. Это небольшая емкость, которая существует между всеми обмотками, где разница напряжений (В/виток) между витками ведет себя подобно конденсатору. Этот конденсатор при высокой частоте действует как шунт вокруг обмотки и позволяет ВЧ переменному току протекать в обход обмоток. Частота, при которой это явление является проблемой, выше частоты авторезонанса обмотки.
Между индуктивностью самой обмотки и этой распределенной межвитковою емкостью формируется колебательный контур. Выше точки авто резонанса влияние емкости становится большим от влияния индуктивности, что снижает уровень затухания при высоких частотах.
Частотная характеристика фильтра изображена на рис. 2.2.
Рисунок 2.2 - Частотная характеристика фильтра
Этот эффект можно уменьшить, использовав Cx большей емкости. Частота авторезонанса является той точкой, в которой проявляется возможность наибольшего затухания для фильтра. Таким образом, путем выбора метода намотки обмоток индуктивности, можно разместить эту точку поверх частоты, которая нужна для наилучшей фильтрации.
Чтобы начать процесс проектирования необходимо измерить спектр не фильтрованного кондуктивного шума или принять по отношению к нему некоторые предположения. Это необходимо для того, чтобы знать, каким должно быть затухание и на каких частотах.
Примем, что нам необходимо 24дБ затухания на частоте переключения преобразователя напряжения.
Определим частоту среза характеристики фильтра:
,
де Gж - затухания;
,
где: fc - желаемая частота среза характеристики фильтра, fsw- рабочая частота преобразователя напряжения. В нашем случае fsw=100кГц, затухание Gж= -24дБ.
Выбор коэффициента затухания
Минимальный коэффициент затухания (ж) не должен быть менее 0,707. Меньшее значение приведет к “резонансу” и не даст меньшее 3дБ затухания на частоте среза характеристики.
Расчет начальных значений компонентов
6
,
где: ж - коэффициент затухания, ж=0,707, RL =50 Ом - импеданс линии,
;
Принимаем С?0,1мкФ 400В.
Принимаем Сх=0,22мкФ400В. Данные конденсаторы размещены между линиями электропитания и должны выдерживать напряжение 250 В и скачки напряжения.
Величину Су - конденсаторов, которые размещены между каждой фазой и “землей”, и должны выдерживать высокие напряжения ?2500 В выбирают на несколько порядков меньше Су чем Сх. Это связано с тем, что наибольшая емкость конденсатора, доступная при номинальном напряжении 4 кВ, составляет 0,01 мкФ. Принимаем Су=2,2 нФ.
Поскольку суммарная емкость выбранных конденсаторов больше рассчитанной, то можно допустить, что фильтр будет обеспечивать минимум -- 60 дБ затухания при частотах в диапазоне от 500 кГц до 10 Мгц.
Расчетная схема фильтра подходит как для входной, так и для выходной цепи:
Рисунок 2.3 - Схема фильтра расчетная Входной фильтр электромагнитных помех.
L5=L=450 мкГн
С55=С58=Сх=0,22 мкФ400 В
С54=С56=Су=3,3 нФ3 кВ. Выходной фильтр электромагнитных помех.
L6=L=450 мкГн
С54=С56=Су=3,3 нФ3 кВ.
С57=С59=Сх=0,22 мкФ400 В Обоснование выбора элементов схемы
Источник бесперебойного питания должен обеспечивать круглосуточную работу любого устройства, которое подключено к нему, с сохранением выходных параметров, поэтому к нему выдвигаются жесткие требования, как к конструкции, так и к выбору элементов схемы.
Условно элементы схемы можно разделить на элементы общего применения и специальные.
Элементы общего применения являются изделиями массового производства, поэтому они достаточно широко стандартизированы. Стандартами и нормами установлены технико-экономически и качественные показатели, параметры и размеры элементов. Такие элементы называют типовыми. Выбор типовых элементов проводится по параметрам и характеристикам, которые описывают их свойства, как при нормальных условиях эксплуатации, так и при разных влияниях (климатических, механических и др.).
Основными электрическими параметрами является: номинальное значение величины, характерной для данного элемента (сопротивление резисторов, емкость конденсаторов, индуктивность катушек и т. д.) и границы допустимых отклонений; параметры, которые характеризуют электрическую прочность и способность долгосрочно выдерживать электрическую нагрузку; параметры, которые характеризуют потери, стабильность и надежность.
Основными требованиями, которыми нужно руководствоваться при проектировании радиоэлектронной аппаратуры, являются требования по наименьшей стоимости изделия, его высокой надежности и минимальным малогабаритным показателям. Кроме того, при проектировании важно увеличивать коэффициент повторяемости электрорадиоэлементо . Исходя из перечисленных выше критериев сделаем выбор элементной базы проектируемого устройства. 3 Основные параметры сетевых фильтров. Варисторы
При выбросе напряжения в сети амплитудой более чем 380 вольт срабатывают варисторы, ограничивая это напряжение. Варистором называют полупроводниковый резистор, основное свойство которого заключается в способности изменять свое сопротивление при изменении приложенного к нему электрического напряжения.
Первоначально варисторы использовали в качестве высоковольтных разрядников, для защиты электрооборудования в высоковольтных пиниях электропередач. Для изготовления варисторов используют порошок, состоящий из кристаллов карбида кремния, скрепленный связующим веществом.
Нелинейность вольт-амперной характеристики варистора связана с процессами, происходящими, на контактах и поверхности кристаллов при протекании тока. Кристаллы имеют разнообразную форму. При малом приложенном напряжении ток протекает через участки соприкосновения кристаллов. С возрастанием напряжения пропорционально увеличивается ток через эти участки и начинает протекать ток через участки с малыми зазорами между кристаллами. Чем выше напряжение; тем с большими зазорами между кристаллами подключаются участки. Новые проводящие цепочки включаются параллельно. В результате эффективное сечение, по которому протекает ток, возрастает, сопротивление уменьшается. Электропроводность такой структуры связана с несколькими механизмами: с замыканием кристаллов карбида кремния, с пробоем оксидных поверхностных пленок на кристаллах и с нагревом контактирующих точек между кристаллами.
Работу варистора в статическом режиме характеризует номинальное сопротивление Rc при определенном значении приложенного напряжения Ux.
Динамический режим работы варистора определяет дифференциальное сопротивление при том же значении приложенного напряжения
Rд=dU/dI
Важным параметром варисторов является коэффициент нелинейности, определяемый по отношению статического сопротивления к дифференциальному для одной и той же точки вольтамперной характеристики:
в = Rc/Rд=U/I * dI/dU
Коэффициент нелинейности может быть определен путем измерения значений токов I1 и I2 протекающих через варистор при двух известных значениях напряжений U1 и U2:
В = lg * I 2/I1 / lg * U2/U1 = lgI2-lgI1/lgU2 - lgU1
Одним из основных параметров варистора является классификационное напряжение, которое измеряют при заданном классификационном значении тока. Коэффициент нелинейности устанавливается обычно для каждого значения классификационного напряжения.
На практике более удобно пользоваться температурным: коэффициентом, тока TKI -- относительным изменением тока варистора при изменении температуры окружающей среды и при неизменном, приложенном, напряжении:
TK I = 1/I * dl/dT
Внешний вид варисторов различных типов - показан на рис.3.1 Наибольшее применение получили варисторы в форме дисков, шайб и стержней.
Рисунок 3.1 - Конструктивное оформление варисторов
Рисунок 3.2 - Управляемые варисторы
Обозначение варисторов состоит: из сокращенного наименования . прибора СН (сопротивление нелинейное); первая цифра означает материал (1 -- карбид кремния);. вторая цифра -- конструкцию (1 -- стержневые, 2 -- дисковые); третья цифра - габарит токопроводящего элемента; далее указывается классификационное напряжение и величина его отклонения. А- варисторы стержневого типа, Б- дискового типа. Например, СН1-2-1-56+10%. Можно получить управляемые варисторы. Для эт и т.д.................