Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.
Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.
Результат поиска
Наименование:
Курсовик Уравнения ВАХ нелинейного элемента, полевого транзистора. Спектр выходного тока вплоть до десятой гармоники. Временные диаграммы входного напряжения, тока. Индуктивность и полоса пропускания контура. Амплитудный детектор вещательного приёмника.
Информация:
Тип работы: Курсовик.
Предмет: Схемотехника.
Добавлен: 30.11.2007.
Год: 2007.
Уникальность по antiplagiat.ru: < 30%
Описание (план):
47
Министерство образования и науки Украины
Севастопольский национальный технический университет КУРСОВАЯ РАБОТА
по дисциплине «Сигналы и процессы в радиотехнике»
Выполнил студент: Гармаш М. А.
Группа: Р-33 д
Номер зачётной книжки: 212467
Допущен к защите
Защищен с оценкой
Руководитель работы
___
Агафонцева О. И.
___ « »___ 2003 г. « »___ 2003 г.
Севастополь
2003 Содержание
1 ЗАДАНИЕ
2 ЗАДАНИЕ
3 ЗАДАНИЕ
4 ЗАДАНИЕ
5 ЗАДАНИЕ
6 ЗАДАНИЕ
7 ЗАДАНИЕ
ПЕРЕЧЕНЬ ССЫЛОК Задание 1 Условие:
На безынерционный нелинейный элемент, ВАХ которого аппроксимирована кусочно - ломаной линией с крутизной линейного участка и напряжением отсечки подано напряжение . Требуется:
Составить уравнение ВАХ нелинейного элемента.
Рассчитать и построить спектр выходного тока вплоть до десятой гармоники. Построить временные диаграммы входного напряжения, тока, протекающего через элемент и его первых четырёх гармоник.
Определить углы отсечки и напряжения смещения , при которых в спектре тока отсутствует: а) вторая гармоника; б) третья гармоника.
Найти угол отсечки и напряжение смещения , соответствующие максимуму амплитуды третьей гармоники для случая, когда .
Построить колебательную характеристику и описать её особенности. Найти напряжение смещения , соответствующее ее линейности.
Исходные данные приведены ниже:
S=45ма/А; U1=-3 В; U0=-2 В; Um=2 В. Решение:
1. Воспользовавшись [1] составим уравнение ВАХ нелинейного элемента , которое определяется по формуле (1.1)
Импульсы выходного тока можно рассчитать по формуле: (1.2)
График изображен на рисунке 1.1
Рисунок 1.1 -
а) График ВАХ уравнения нелинейного элемента.
б) График выходного тока .
в) График входного напряжения.
2. Рассчитаем спектр выходного тока. Известно, что спектр тока рассчитывается по формуле:
, (1.3)
где - амплитуда -ой гармоники тока;
- амплитуда импульсов тока; n- номер гармоники (n=0,1,…,10);
- коэффициенты Берга,
-угол отсечки, определяемый по формуле:
. (1.3)
Подставив численные значения находим =2.094. Строим спектрограмму выходного тока используя [3]. Спектр показан на рисунке 1.2 (1.4) (1.6) (1.5)
Рисунок 1.2 - Спектрограмма выходного тока
Теперь построим графики первых четырёх гармоник при помощи [3]:
Рисунок 1.3 - графики первых четырёх гармоник
3. Определим угол отсечки и смещение, при котором в спектре тока отсутствует n-я гармоника, что в соответствии с (1.3), можно определить путём решения уравнения :
. (1.7)
Результат показан ниже :
для 2 гармоники 1 = 0, 2 = 180;
для 3 гармоники = 0, 2 = 90, = 180;
Проведём суммирование гармоник:
Рисунок 1.4 - сумма первых десяти гармоник
4. Угол отсечки, соответствующий максимуму n-ой гармоники в спектре тока (при ) определяется по формуле: (1.8)
Угол отсечки равен 60. Определим соответствующее напряжение смещения U0 из формулы(1.3).В итоге получим :
Подставляя численные значения получим U0= - 2В.
5. Колебательная характеристика нелинейного элемента определяется зависимостью амплитуды первой гармоники тока , протекающего через нелинейный элемент, от амплитуды входного напряжения:
.
Поскольку U1, то вид характеристики определяется по формуле:
. (1.9)
где- средняя крутизна, определяемая cоотношением:
: . (1.10)
Построим колебательную характеристику используя формулу (1.6) с учетом этой
Колебательная характеристика изображена на рисунке 1.5:
Рисунок 1.5 - Колебательная характеристика Задание 2
Условие:
На вход резонансного умножителя частоты, выполненного на полевом транзисторе (рисунок 2) подано напряжение , где - частота сигнала. Нагрузкой умножителя является колебательный контур с резонансной частотой , ёмкостью и добротностью . Коэффициент включения катушки -. Сток - затворная характеристика транзистора задана в виде таблицы 3 и может быть аппроксимирована в окрестности полиномом:
.
Таблица 1 - Характеристика транзистора к заданию 2
, В
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
, мА
1,6
1,8
2,1
2,5
3
3,8
4,8
6
7,5
9
12
15
20
Требуется:
Построить ВАХ полевого транзистора. Изобразить временные диаграммы входного напряжения, тока стока и выходного напряжения умножителя.
Определить коэффициенты аппроксимирующего полинома .
Рассчитать спектр тока стока и спектр выходного напряжения умножителя. Построить соответствующие спектрограммы и найти коэффициент нелинейных искажений выходного напряжения.
Рассчитать нормированную АЧХ контура, построить её в том же частотном масштабе, что и спектрограммы, расположив их друг под другом.
Рассчитать индуктивность и полосу пропускания контура.
Исходные данные :
U0= -3,5 B, Um=3 B, f1=2 МГц C=120 пФ, P=0,2 Примечание: при расчётах положить равным 12 В.
Рисунок 2.1 - Схема удвоителя частоты. Решение:
1. По значениям, приведенным в таблице 3, построим ВАХ полевого транзистора. Изобразим временные диаграммы входного напряжения:
U(t)=U0+Um*cos(wt) (2.1)
Рисунок 2.2 -
а) сток-затворная характеристика транзистора.
б) ток стока.
в) входное напряжение транзистора.
2. Коэффициенты определим, используя метод узловых точек. Выберем три точки (Напряжения соответственно равные ), в которых аппроксимирующий полином совпадает с заданной характеристикой: u1 = - 3,5В u2= -0,5В u3=--7,5В
Затем, подставляя в полином значения тока, взятые из таблицы 3 и напряжения, соответствующие этим точкам, получают три уравнения. (2.2)
Решая систему уравнений (2.2), используя [3], с помощью процедуры Given-Minerr , определим искомые коэффициенты полинома : a0= 8,25 мА ; a1= 2,2 мА/В a2= 0,26 мА/В2
Проведем расчёт аппроксимирующей характеристики в рабочем диапазоне напряжений по формуле: (2.3)
3. Спектр тока стока рассчитаем с использованием метода кратного аргумента [2] . Для этого входное напряжение подставим в аппроксимирующий полином и приведем результат к виду:
, (2.4)
где - постоянная составляющая; - амплитуды первой и второй гармоник соответственно;.После подстановки входного напряжения в полином, получим: (2.5)(2.6) (2.7)
Подставляя числовые значения коэффициентов a0, a1, a3 и амплитудное значение входного сигнала Um, получим :
I0= 9.45 I1=6.6 I2=1.2
Изобразим спектр тока стока на рисунке 2.4, используя [3]:
Рисунок 2.3 - Спектр тока стока
Рассчитаем cпектр выходного напряжения, которое создаётся током (2.4).Он будет содержать постоянную составляющую и две гармоники с амплитудами и начальными фазами и
, (2.8)
где - определим по формулам:
; (2.9)
; (2.10)
, (2.11)
где - напряжение источника питания;
- сопротивление катушки индуктивности;
- характеристическое сопротивление контура; - резонансная частота; - номер гармоники ().
Подставив числовые значения для f1, Ec=12, I0, Q, C, и рассчитав промежуточные значения:
= 331,573 Ом , r = 5,526 Ом; R0 = 19890 Oм; Fр =4МГц;
рассчитаем спектр выходного напряжения с помощью [3]:
U0 =11,99 В, U1 = 0.058 В , U2= 0.955 В.
Изобразим спектр амплитуд и фаз выходного напряжения на рисунке 2.5:
Рисунок 2.4 - Спектр амплитуд и фаз выходного напряжения
Определим коэффициент нелинейных искажений выходного напряжения по следующей формуле:
4. Найдем- нормированную амплитудно-частотную характеристику контура, которую рассчитаем по формуле: (2.12)
Изобразим нормированную амплитудно-частотную и фазо-частотную характеристики контура на рисунке 2.6, используя [3]:
Рисунок 2.5 - Амплитудно-частотная и фазо-частотная характеристики контура
5. Используя формулу [1] для индуктивности контура:
L=/2**fp, (2.13)
найдём индуктивность контура L= 520.8 мкГн.
Графическим способом на уровне 0.707 определяем полосу пропускания, которая равна f= 1,3105 кГц. Задание 3
Условие:
На вход амплитудного детектора вещательного приёмника, содержащего диод с внутренним сопротивлением в открытом состоянии и - фильтр, подаётся амплитудно-модулиров нный сигнал и узкополосный шум с равномерным энергетическим спектром в полосе частот, равной полосе пропускания тракта промежуточной частоты приёмника и дисперсией . Требуется:
Привести схему детектора и определить ёмкость фильтра нижних частот.
Рассчитать дисперсию входного шума и амплитуду несущего колебания .
Определить отношение сигнал/помеха на входе и выходе детектора (по мощности) в отсутствии модуляции.
Рассчитать постоянную составляющую и амплитуду переменной составляющей выходного сигнала.
Построить на одном рисунке ВАХ диода, полагая напряжение отсечки равным нулю, а также временные диаграммы выходного напряжения, тока диода и напряжения на диоде. Исходные данные приведены ниже:
R1=20 Ом ; R=10 кОм ; M=30% ; W0=4.6 Решение:
1. На рис.3.1 изобразим схему детектора:
Рисунок 3.1 - Схема детектора.
Постоянную времени фильтра детектора выберем из условия
, (3.1)
где - частота несущего колебания;
- максимальная частота в спектре модулирующего сигнала.
Для того чтобы удовлетворить условию (3.1) следует выберем как среднее геометрическое
. (3.2)
где кГц (промежуточная частота),
кГц.
Рассчитав по формуле (3.2),находим, что =4 мкс .Далее определим ёмкость фильтра по формуле:
. (3.3)
Расчет производим в [M] и находим ,что C= 0,4 нФ.
2. Дисперсию входного шума определяют по формуле
, (3.4)
где - энергетический спектр шума.
Интегрировать будем ,по условию задачи, в полосе частот . ,
поскольку спектр шума равномерен, а за пределами этой полосы - равен нулю. Определим дисперсию входного шума по формуле (3.4) с помощью [3]:
Dx=0.125 В2.
Вычислим амплитуду несущего колебания в соответствии с задачей по формуле :
. (3.5)
Подставив исходные значения получим: =3.537 В.
3. Определяем отношение сигнал/помеха на входе (по мощности) детектора :
. (3.6)
Подставив исходные значения получим:: h=50
Определяем отношение сигнал/помеха на выходе детектора по формуле :
, (3.7)
где - среднеквадратическое отклонение входного шума;
- постоянная составляющая выходного напряжения детектора при одновременном воздействии сигнала (несущей) и шума. Сначала находим СКО=0.354 В. Далее определяем постоянную составляющую формуле
, (3.8)
где -функции Бесселя нулевого и первого порядков (модифицированные) соответственно. Производим вычисления с помощью [3] находим =3,555 В. Подставляем полученные значения , СКО находим, что сигнал/помеха на выходе равен:
4. Напряжение на выходе детектора в отсутствии шума прямопропорционально амплитуде входного сигнала
, (3.9)
где - коэффициент преобразования детектора, который определяется по формуле:
. (3.10)
где -угол отсечки.
Угол отсечки тока определим решением трансцендентного уравнения:
. (3.11)
Решение уравнения (3.11) произведем в [3].Решив (3.11) находим =21.83, а К0=0.928.
Раскрыв скобки в выражении (3.9), приведём выражение для выходного сигнала к виду
, (3.12)
где: - постоянная составляющая выходного сигнала;
- амплитуда выходного сигнала.
Подставив значения, получим:
Построим сигнал на выходе детектора:
. (3.13)
Рисунок 3.2 - График сигнала на выходе детектора.
Изобразим ВАХ диода, а также временные диаграммы тока диода и напряжения на диоде:
Рисунок 3.3 - График ВАХ диода, временные диаграммы тока диода и напряжения на диоде Задание №4
Генератор на полевом транзисторе с контуром в цепи стока генерирует гармоническое колебание с частотой . Контур состоит из индуктивности L, емкость C и имеет добротность Q. Крутизна сток-затворной характеристики транзистора в рабочей точке S. Условие:
1. Изобразить электрическую схему генератора. Записать дифференциальное уравнение и вывести условие самовозбуждения генератора.
2. Определить критические коэффициенты включения .
3. Выбрать значение P, обеспечивающее устойчивую генерацию и рассчитать неизвестный элемент контура.
4. Изобразить качественно процесс установления колебаний в генераторе, указать области нестационарного и стационарного режимов. Исходные данные:
Индуктивная трехточечная схема; Решение:
1. Представим принципиальную схему индуктивного трехточечного автогенератора [2]:
Рисунок 4.1 - Автогенератор, собранный по индуктивной трехточечной схеме.
Для составления дифференциального уравнения генератора рассмотрим колебательный контур подробнее, при этом как бы разорвав обратную связь (рисунок 4.2).
Рисунок 4.2 - Колебательный контур автогенератора.
В схеме на рисунке 4.2 R - сопротивление потерь контура.
По законам Кирхгофа и, используя компонентные уравнения элементов запишем систему характеристических уравнений [6] цепи представленной на рисунке 4.2.
. (4.1)
Для решения системы (4.1) не хватает еще одного уравнения. Его мы возьмем воспользовавшись характеристиками транзистора:
. (4.2)
Теперь проведя необходимые подстановки запишем уравнение с одним неизвестным током i.
. (4.3)
Чтобы избавиться от интеграла продифференцируем уравнение (4.3) по времени.
. (4.4)
Обозначим коэффициенты при неизвестном и его производ и т.д.................