Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Курсовик Термн керамка, її види, значення та особливост ндю. Види керамки за хмчними ознаками: оксидна та безкиснева; за функцональним призначенням: декоративна технчна. Одержання оксидної керамки; методика дослдження оксидно-ндєвої керамки.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 26.09.2014. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Міністерство науки та освіти України
ДНІПРОПЕТРОВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ
Факультет фізики, електроніки та комп'ютерніх систем
Кафедра радіоелектроніки
КУРСОВА РОБОТА ЗА СПЕЦІАЛЬНІСТЮ
НА ТЕМУ:
«Синтез і дослідження оксидно-ідієвої кераміки з неомічною провідністю»

Дніпропетровськ 2009
Реферат
У роботі описані, робота виходу електрона, основні принципи вимірювання роботи виходу електрона. Окремо сконцентровано увагу на методі Кельвіна.
Вступ

Перед тим як розглядати оксидно-індієву кераміку, потрібно розглянути термін кераміка, її види, значення та ознайомитись з особливостями Індію.
Традиційним терміном кераміка називають вироби і матеріали, отримані спіканням глин, їх сумішей з мінеральними добавками, оксидів, інших неорганічних з'єднань та їх сумішей. Спікання представляє собою процес ущільнення пористого твердого тіла в області температури, при якій весь об'єм речовини ще не перетворюється в розплав [12]. При цьому ущільнення може бути як твердо фазним, так і відбуватися при участі рідкої фази.
За функціональним призначення розрізняють декоративну і технічну кераміку. За хімічними ознаками кераміку поділяють на два великих класи: оксидну та безкисневу кераміку.
Безкиснева кераміка формується на базі порошків безкисневих неметалічних тугоплавких з'єднань (боридів, карбідів, нітридів) [6]. Виходячи з характеру взаємодії керамічних виробів з навколишнім середовищем при їх експлуатації безкиснева кераміка може бути розділена по областям застосування на дві групи [6]: матеріали, що беруть участь в процесах передачі, регулювання або перетворення різних видів енергії (діелектричні, напівпровідникові, резистивні, поглинаючі, електродні) і конструкційні керамічні матеріали, пасивно сприймаючі різного роду механічні і термічні навантаження, а також дію хімічно агресивних середовищ без зміни складу, структури та особливостей матеріалу (жаростійкі, зносостійкі, вогнестійкі, хімічно стійкі матеріали).
Керамічні матеріали завоювали стійкі позиції в електронній техніці і призначаються для виготовлення резисторів з від'ємним і додатнім температурним коефіцієнтами опору, чуттєві елементи сенсорних пристроїв, варисторів, п'єзоелектричних елементів, корпусів і підкладок інтегральних схем та інших об'єктів [6].
Цікавість до оксидно-індієвої кераміки виникла з потреби змін властивостей варисторної кераміки, яка застосовується для виготовлення варисторів.
Варистор (vari(able) (resi)stor - змінний резистор) - напівпровідниковий резистор, електричний опір (провідність) якого нелінійно залежить від прикладеної напруги, тобто він має нелінійну вольт-амперну характеристику і має два виводи. Варистори використовуються для стабілізації та регулювання низькочастотних токів та напруг, високовольтні варистори використовують як запобіжники перенапруг. Щоб у цьому переконатися достатньо поглянути на вольт-амперні характеристики деяких розповсюджених типів варисторів на основі оксиду цинку та карбіду кремнію, ВАХ представлена на рис. 1.
Рис. 1. Вольт-амперні характеристики варисторів: сині -- на основі ZnO, червоні -- на основе SiC.
Як видно з ВАХ варисторів на основі оксиду цинку, при зміні значень сили струму - напруга залишається сталою.
Нелінійність характеристик варисторів зумовлена локальним нагрівом дотичних граней багато численних кристалів матеріалу кераміки (напівпровідникового . При локальному збільшенні температури на границях кристалів, їх опір знижується, що призводить до зменшення спільного опору варисторів.
Один з основних параметрів варистора - коефіцієнт нелінійності л - відношення його статичного опору R до динамічного опору Rd:
,
Коефіцієнт нелінійності у варисторов на основе ZnO - 20-100.Температурний коефіцієнти опору варистору - від'ємна величина.
Дослідження неоднорідних напівпровідників з неомічною провідністю представляє цікавість для створення нових нелінійних елементів. Для цього корисно використовувати принципи та ідеї, що лежать в основі існуючих приладів, наприклад розглянутих вище, керамічних оксидних варисторів.
Для отримання оксидно-цинкової варисторної кераміки с різкою над лінійною залежністю струму від напруги, використовують невеликі добавки оксидів з великим іонним радіусом до основного оксиду з провідністю n-типу (оксид цинку), так що при спіканні у повітряному середовищі на границях зерен (ГЗ) ZnO формуються потенційні бар'єри. При цьому часто використовують добавки оксиду вісмуту і деякі інші оксиди. Результати дослідів свідчать про те, що потенціальні бар'єри на ГЗ обумовлені збідненням при поверхневих шарів зерен ZnO основними носіями заряду.
Тому для створення варисторної кераміки з особливостями, відмінними від особливостей традиційної оксидно-цинкової кераміки, виникає цікавість заміни оксиду цинку на інший оксид. С цією ціллю отримана кераміка на основі оксиду індію с додатком оксиду вісмуту, а також кераміка з додаванням оксиду стронцію. Однак встановлено, що вольт-амперні характеристики отриманих зразків та відомої оксидно-цинкової кераміки принципово відрізняються.
1. Одержання оксидної кераміки
Технологія одержання оксидної кераміки майже однакова, незалежно від типу оксиду у її складі. Далі буде розглянуто отримання оксидно-цинкової кераміки. Сировиною для виготовлення оксидно-цинкової кераміки служать, як правило, порошки оксидів металів. Щоб отримати високий коефіцієнт не лінійності майбутнього зразка до складу основного оксиду додають оксид вісмуту і оксид кобальту (чи марганцю). Також відома система з високим коефіцієнтом не лінійності ZnO - Pr6O11 - Co3O4 [38]. Ці дві системи отримали найбільше використання для виготовлення високо нелінійних варисторів. Комерційні склади окрім вказаних добавок містять ряд оксидних домішок, що впливають на класифікаційну напругу, не лінійність ВАХ в області сильних струмів, провідність в слабкому електричному полі, стабільність та інші властивості керамічних варисторів.
Процес виготовлення не омічної оксидної кераміки включає наступні етапи: важення оксидів в заданій пропорції, виготовлення однорідної суміші шляхом мокрого помолу, висушування отриманого шлікеру, пресування заготовок, спікання заготовок на повітрі при повільному підйомі температури до 1400 - 1600 К, витримці на визначений час при тій же температурі і повільному охолодженні заготовок до кімнатної температури та нанесення електродів. Реальний процес отримання кераміки для варисторів являється більш складним і містить додаткові операції. Електричні параметри кераміки сильно залежать від обраного хімічного складу і технологічного режиму на всіх етапах отримання кераміки.
Важливе значення має хімічний склад обраних оксидів. Відхилення від стехіометрії і надлишкові домішки можуть погіршити електричні властивості кераміки і зробити неможливим отримання потрібних параметрів варисторів. Хоч в керамічній технології пред'являються менш жорсткі потреби до чистоти отримуваної сировини, ніж в технології інтегральних схем, виробництво кераміки для варисторів являється напівпровідниковим з усіма випливаючи ми обставинами по відношенню до організації, наукового забезпечення та наукового супроводу такого виробництва. У вихідному оксиді цинку слід прагнути зменшити відхилення від стехіометричного відношення. В противному випадку отримана кераміка буде мати підвищену провідність. В зв'язку з цим виникає цікавість в розробці методів діагностики придатності оксидів для виготовлення з них варисторів. Важливий контроль степені стехіометрії, дисперсності оксидів і відсутності в них шкідливих домішок.
Приготування сумішей оксидів проводять частіше в кульових мельницях (обертаються циліндри, в середині яких знаходяться змішувані оксиди, дистильована вода або інша рідина та розмелюючи тіла з твердого матеріалу). Режим цієї технологічної операції впливає на властивості кераміки [3].
Дисперсність вихідних порошків оксидів (розмір часток і характер розподілу часток по розміру) представляється важливим фактором забезпечення однорідності суміші основного оксиду з домішковими оксидами. Без досягнення однорідності суміші оксидів не вдається отримати кераміку, придатну для використання в якості варисторного матеріалу. Наслідком неоднорідності хімічного складу суміші оксидів являється неоднорідність електричних властивостей кераміки, в результаті чого в процесі експлуатації варисторів виникає електричне і теплове перевантаження локальних областей і прискорюється деградація варисторів.
Вихідний порошкоподібний оксид характеризується помітною тенденцією до злипання дисперсних часток, що видно при спостереженні порошку у растровому електронному мікроскопі при достатньо великому збільшенні [39]. Причиною злипання часток оксиду слугує тенденція дисперсної системи до мінімізації вільної енергії поверхні завдяки дії сил тяжіння між колоїдними частинками. Це явище не дозволяє відбуватися гомогенізації суміші оксидів. Для підтвердження існування взаємодії між високодисперсними частинками оксидів на рис.1.1 представлено розподілення часток оксиду цинку по розміру, отримане методом розсіяння лазерного випромінювання на приладі ANALYSETTE - 22.
Рис.1.1. Розподіл часток ZnO по розміру до (1) та після ультразвукової обробки (f = 40кГц, звукова потужність 110 Вт) на протязі двох хвилин (2)
Вихідна суспензія оксиду цинку в воді характеризується постійним розподілом розміру часток в вивченому інтервалі 1-100 мкм (гістограма «1» на рис.1.1), хоч часточки оксиду цинку, по даним електричної мікроскопії, мають розміри, не перевищуючі одного мікрометра. Ультразвукове диспергування зменшує долю часток з проміжними розмірами, але не впливає на існування великих часток, які являються стійкими агрегатами, що складаються з більш менших часток (гістограма «2» на рис.1.1).
Умови і режими пресування заготовок кераміки впливають на властивості отримуваних матеріалів [3,5]. В особливості, класифікаційна напруга і коефіцієнт не лінійності зразків кераміки на основі ZnO залежать від тиску пресування заготовок [40].
В процесі спікання пресованої суміші оксидів виникають складні фізико-хімічні процеси, багато аспектів яких продовжують досліджуватись. Розглянемо основні явища, виникаючі при спіканні суміші для прикладу ZnO - Bi2O3 - Sb2O3 - Co3O4 - MnO2.
При нагріванні заготовки до температур 670-770 К виникає твердо фазна взаємодія ZnO і Bi2O3 зі створенням фази ZnO. 24 Bi2O3, на формування йде весь оксид вісмуту низькотемпературної б - модифікації. В області температур 920 - 970 К, завдяки реакціям в твердому стані, створюється фаза з структурою шпінелі Zn7Bi3Sb3O14 [42]. В області температур 1170 К виникає перехід Co3O4 виділенням кисню в стійкий при високих температурах оксид CoO, де кобальт знаходиться в двовалентному стані. В результаті цього кобальт починає інтенсивно розчинятися в решітці оксиду цинку. Цей процес відповідний за створення глибоких рівнів в оксиді цинку і зелене забарвлення готової кераміки. В цій же області температур проходить плавлення фази с структурою пирохлора, ідентифікуєме методом високотемпературної рентгенівської дифракції. Поява рідкої фази інтенсифікує процес усадки (ущільнення) заготовки. Для ілюстрації цього процесу на рис.1.2 приведені результати дилатометрії спікаємої заготовки, показуючи різке зменшення лінійних розмірів спікаємої заготовки в вузькому температурному інтервалі.
Рис. 1.2. Залежність зміни розміру заготовки ZnO - Bi2O3 - Sb2O3 - Co3O4 - MnO2 - Cr2O2 від температури (дилатометрична крива)
Ці дані дозволяють вважати процес спікання оксидної кераміки рідко фазним. При подальшому нагріванні в спікаємій заготовці спостерігається лише дві кристалічні фази: ZnO та фаза з структурою шпінелі. Після помітної усадки спікаємого зразка різко інтенсифікується процес рекристалізації оксиду цинку, в результаті якого монокристалічні частки оксиду цинку с розміром порядку десятих долей мікрометра (рис.1.1) виростають в зерна оксиду цинку розміром 5-30 мкм за рахунок переносу речовини від дрібних частин з великою поверхневою енергією до великих частин з меншою поверхневою енергією.
При охолодженні до температур біля 1220 К виникає перехід рідкої фази на основі Bi2O3 в тверді фази: кристалічну фазу з структурою полі хлору і аморфну фазу на основі Bi2O3.Аморфна фаза може розпадатися з утворенням, в залежності від температурного режиму, фази ZnO. 24 Bi2O3 або високотемпературних модифікацій оксиду вісмуту в-Bi2O3, б-Bi2O3, опиняючихся стабільними і при низьких температурах завдяки розчинених в них другим атомам. Самі по собі процеси фазо створення без обліку ролі кисню зовнішнього середовища ще не вичерпують суті явищ, виникаючих при охолодженні спікає мого зразка. Принципово важливим є насичення границь зерен (ГЗ) оксиду цинку киснем, в результаті чого створюються потенційні бар'єри, визначаючі електрофізичні властивості оксидної кераміки.
2. Методика дослідження оксидно-індієвої кераміки

Зразки кераміки In2O3-SrO та In2O3-Bi2O3 отримані по традиційній керамічній технології. Змішування оксиду індію In2O3 з додаванням SrCO3 та Bi2O3 проводилось з використанням дистильованої води. Після сушки шлікера при температурі 400 К пресувались заготовки при тиску 46 МРа. Обпалювання заготовок виповнюється на повітрі при збільшенні температури з швидкістю 300 К/год. До температури обпалювання (Тобп), яка складає 1370 К у випадку In2O3-Bi2O3 та 1270 К для In2O3-SrO. Після витримки при Тобп протягом 1 години (In2O3-Bi2O3) чи двох годин (In2O3-SrO) заготовки охолоджуються разом з піччю з швидкістю приблизно 300 К/год. На пласку поверхню спечених заготовок наносяться електроди. В якості електродів застосовують: евтектика In-Ga (для In2O3-SrO) і Ag-паста, не потребуюча термообробки (для In2O3-Bi2O3). Для In2O3-Bi2O3 ефект обмеження спостерігався також і при використанні евтектики In-Ga та Al-пасти, випалюваної на повітрі при 870 К.
ВАХ на постійному струмі вивченні (джерела типу ТЕС 41 і ТВ1 і універсальні вольтметри В7-21) при збільшенні і зменшенні напруги. При досліді зразків в різній степені був помічений гістерезис ВАХ. В ряді випадків спостерігалась залежність струму від часу. Тому використовують два способи регістрації ВАХ. В одному із них фіксують значення струму, отримані в перший момент після встановлення напруги і після 30 секунд після подачі напруги, а потім напруга змінювалась. Для порівняння при другому способі регістрації ВАХ фіксують встановлене значення струму після достатньо тривалій витримці зразку під незмінною напругою. При цьому спостерігали задовільно якісне спів падання ВАХ, отриманих при обох способах регістрації.
Для вивчення товщинної залежності опору спочатку знімають ВАХ зразку In2O3-Bi2O3 з In-Ga електродами, а потім шлифкової зменшують його товщину, знову наносять In-Ga електроди і повторюють регістрацію ВАХ. Щоб зменшити можливий вплив крупно масштабної неоднорідності кераміки на досліджувану залежність струму, на кожному етапі зшліфовували один і той же шар зразку.
3. Дослідження оксидно-індієвої кераміки

На рис.1 приведені ВАХ зразків кераміки In2O3-Bi2O3. ВАХ містить лінійну область при ма и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.