На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Микропроцессорные системы автоматизированного контроля условий работы оборудования для метеостанций, микробиологии и фармацевтики, пищевой и химической промышленностей, лабораторий. Требования к сетям, надежности, метрологическое обеспечение разработки.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 27.02.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


СОДЕРЖАНИЕ

Введение
1. Обзорная часть
1.1. Наименование и область применения прибора
1.2. Основание для создания прибора
1.3. Назначение прибора
1.4. Цель разработки
2. Разработка технического задания
2.1.Требования к конструкции устройства
2.2.Показатели применения
2.3. Требования к надежности
2.4. Требования к технологичности и метрологическому обеспечению разработки, производства и эксплуатации
2.5. Требования к уровню унификации и стандартизации
2.6. Требования к безопасности при обслуживании по охране окружающей среды
2.7. Эстетические и эргономические требования
2.8.Требования к составным частям изделия: сырья, исходным и эксплуатационным материалам
2.9. Условия эксплуатации (использование), требования к техническому обслуживанию и ремонту
2.10.Требования к маркировке и упаковке
2.11.Требования к транспортировке и сохранению
3. Разработка схем
3.1. Разработка структурной схемы
3.2. Разработка функциональной схемы прибора
3.3. Разработка принципиальной электрической схемы
4. Заключение
Список используемой литературы
Приложение 1. Схема сигнализатора структурная
Приложение 2. Схема электрическая функциональная
Приложение 3. Схема электрическая принципиальная
Введение
Задачи интенсификации производства, стоящие перед промышленностью и наукой нашей страны, требуют создания новых и совершенствования имеющихся технологических процессов и материалов, строгого контроля качества продукции. Возрастает роль измерений, как в научном эксперименте, так и на производстве. Это в полной мере относится к измерениям электрических и неэлектрических величин, методы которых имеют широкую область применения, отличаются универсальностью, быстродействием, совместимостью с новыми техническими средствами.
Новые возможности открылись перед измерительной техникой после появления микропроцессоров, применение которых позволило не только существенно увеличить точность и быстродействие приборов, расширить их функциональные возможности, но и разработать качественно новые «интеллектуальные» устройства, способные производить управление процессом измерения, автоматически выбирать необходимый диапазон измерений, осуществлять автоматическую калибровку, обрабатывать результаты измерения и представлять их оператору в упорядоченной форме. Имеется также возможность объединения нескольких взаимно дополняющих приборов вместе с ЭВМ в единый информационно-вычислительный комплекс.
Усложнение технологических циклов привело к необходимости одновременного определения большого числа параметров и физических величин, возросла роль динамических измерений. Автоматизация сложных производственных процессов неразрывно связана с применением информационно-измерительных систем, обеспечивающих получение оперативной измерительной информации в должном объеме и эффективное управление течением технологического процесса.
Промышленностью освоены и выпускается много типов микропроцессоров, благодаря которым обеспечены исключительные преимущества цифровым методам обработки информации. Однако существуют аналоговые сигналы, которые надо принимать, обрабатывать, хранить и выдавать пользователю. Важное значение приобретает проблема связи аналоговых объектов с цифровыми управляющими машинами, в частности вопросы преобразований, нормализации сигналов, методы и средства передачи аналоговых сигналов по линиям связи при наличии помех и т.д. Применение микропроцессоров и микро-ЭВМ для сбора данных и управления производственными процессами вызывает ряд проблем аналого-цифрового преобразования сигналов, которые должен решать пользователь.
Для обработки аналоговых и цифровых сигналов разработана большая номенклатура микросхем, среди которых можно отметить генераторы, усилители, аналого-цифровые и цифро-аналоговые преобразователи, модуляторы, компараторы, переключатели тока и напряжения, элементы выборки и хранения, фильтры, вторичные источники питания, центральные процессорные элементы, устройства управления вводом-выводом, программируемые параллельные и последовательные интерфейсы, контроллеры прямого доступа к памяти, магистральные приемопередатчики, блоки микропрограммного управления, приоритетного прерывания, арифметические расширители, запоминающие устройства, многофункциональные синхронизирующие устройства, программируемые таймеры и т.п. Большинство перечисленных схем и устройств являются функциональными составными частями микропроцессорных комплектов, в значительной степени определяя архитектуру микро-ЭВМ. Однако практически любая микро-ЭВМ кроме основных функциональных БИС содержит и значительное число микросхем малой и средней степени интеграции, особенно в периферийном оборудовании, датчиках первичной информации, устройствах встроенного контроля и диагностики, устройствах отображения информации и т.д.
Контроль сложных изделий - трудоемкий и длительный процесс, требующий усилий большого числа лиц для получения достоверной информации. Системы контроля на базе микро-ЭВМ обладают большими преимуществами в отношении стоимости контроля, уменьшения времени его проведения и обработки результатов, надежности, обеспечивают значительную гибкость, высокую компактность и модульную простоту, а также открывают широкие возможности для новых приложений, ранее требовавших использования дорогих специализированных ЭВМ.
В основу решения задачи автоматизированного контроля технического состояния объектов положены следующие принципы: максимальная степень автоматизации процесса контроля и сведение к минимуму числа ручных операций, повышение достоверности результатов контроля, автоматическая выдача протокола результатов испытаний; высокая надежность системы, основанная на использовании встроенной микро-ЭВМ и модульной структуры; максимальная простота и доступность программного обеспечения, благодаря которым система контроля может обслуживаться лицами, не являющимися специалистами в области вычислительной техники.
1. Обзорная часть

1.1. Наименование и область применения прибора

ь Наименование: - «Система автоматического контроля условий эксплуатации оборудования»
ь Область применения: В сфере контроля условий эксплуатации оборудования. А именно, на метеостанциях, в химической и пищевой промышленности, в фармацевтике и микробиологических лабораториях, в электронике и сельском хозяйстве.
1.2. Основание для создания прибора

Основанием для создания «Системы автоматического контроля условий эксплуатации оборудования» является возможность улучшения производственных и качественных показателей в различных сферах промышленности.
1.3. Назначение прибора

«Система автоматического контроля условий эксплуатации оборудования» предназначена для контроля и тестирования следующих метеорологических параметров: температура, давление, влажность. Также в данном устройстве предусмотрена индикация часов реального времени.
1.4. Цель разработки

ь Создание функционально законченной системы автоматического контроля условий эксплуатации оборудования
ь Автоматизация технологических процессов в качестве автономного средства измерения (контроля);
ь Качественное повышение уровня контроля, измерения, управляемости технологическими процессами на предприятии;
ь повышение производительности труда обслуживающего персонала.
2. Разработка технического задания

2.1.Требования к конструкции устройства

1. Конструкция «Системы автоматического контроля условий эксплуатации оборудования» должна обеспечивать возможность ремонта.
2. Конструктивное выполнение должно обеспечивать возможность крепежа «Системы автоматического контроля условий эксплуатации оборудования» к различного рода поверхностям.
3. Электрическая прочность изоляции «Системы автоматического контроля условий эксплуатации оборудования» между токоведущими цепями, а также между токоведущими цепями и корпусом в нормальных климатических условиях эксплуатации должна обеспечивать отсутствие пробоев.
4. Стойкость к влиянию температуры и влажности окружающей среды: изделие должно отвечать климатическому выполнению категории УХЛ 1.2 ГОСТ15150-79.
5. Для антикоррозийной защиты поверхности деталей корпуса применить гальваническое покрытие.
6. На деталях формирующих корпус «Системы автоматического контроля условий эксплуатации оборудования» не должно быть заусениц и повреждений (царапин, вмятин, коррозии).
7. Изделие по показателям помехоустойчивости и ликвидации помех, которые влияют на работу других изделий должно отвечать ГОСТ 22505-83 и ГОСТ 23511-79.
2.2.Показатели применения

Требования к сети:
ь Питание от сети ~ В: 220;
ь Частота, Гц: 50;
Требования к измеряемым параметрам:
v Диапазон измерения температуры -400Сч1250С;
v Диапазон измерения относительной влажности 10%ч95%;
v Диапазон измерения атмосферного давления 0ч400кПа;
Общие требования:
Ш Потребляемая мощность (не более), Вт: 1,95;
Ш Общий КПД, %: 85;
Ш Время реакции на изменение метеоинформации (не более), сек.5;
2.3. Требования к надежности

Ш Изделие по степени надежности должно удовлетворять требованиям ГОСТ 27.003-90.
Ш Средняя наработка на отказ, час:.....не менее 10753;
Ш Вероятность безотказной работы:....не менее 0.98;
Ш Изделие должно выдерживать влияние внешних механических и климатических факторов согласно с ГОСТ 11478-88.
2.4. Требования к технологичности и метрологическому
обеспечению разработки, производства и эксплуатации

ь Требования к технологичности должны отвечать ГОСТ 14.201-83.
ь Конструкция «Системы автоматического контроля условий эксплуатации оборудования» должна обеспечивать возможность выполнения монтажных работ с соблюдением требований технического задания на установку и пайку комплектующих изделия.
ь Конструкция «Системы автоматического контроля условий эксплуатации оборудования» в целом и отдельных узлов должна удовлетворять сборке без применения специального оборудования.
ь Конструкция «Системы автоматического контроля условий эксплуатации оборудования» должна отвечать требованиям ремонтопригодности согласно Р50-84-88.
ь «Система автоматического контроля условий эксплуатации оборудования» должна иметь класс точности не менее 0,1
2.5. Требования к уровню унификации и стандартизации

ь В качестве комплектующих единиц и деталей (коммуникационные изделия электроники, детали крепления, детали установки) должны использоваться серийные изделия.
ь Монтажные платы, панели, узлы крепления и установки должны быть унифицированы.
ь Коэффициент унификации стандартных и заимствуемых деталей должен быть не менее 0.9.
2.6. Требования к безопасности при обслуживании по охране
окружающей среды

ь Конструкция «Системы автоматического контроля условий эксплуатации оборудования» должна обеспечить безопасность персонала при эксплуатации изделия. Общие требования к электрической и механической безопасности согласно ГОСТ 12.2.007.0-75.
ь По мере защиты человека от поражения электрическим током блок должен быть изготовлен соответственно ГОСТ 12.2.007.0-75, класс защиты - 1.
ь Меры защиты от поражения электрическим током должны отвечать ГОСТ 12.2.007.0-75.
ь Общие требования по обеспечению пожарной безопасности в помещениях согласно ГОСТ 12.1.004-85.
ь Конструкция «Системы автоматического контроля условий эксплуатации оборудования» должна исключать возможность неверного присоединения его токоведущих частей.
ь Штекера и разъёмы электрических цепей должны иметь надписи, которые отвечают их назначению.
ь Конструкция «Системы автоматического контроля условий эксплуатации оборудования» должна исключать возможность попадания в корпус посторонних вещей.
ь В документации по эксплуатации и требованиям по технике безопасности должны быть соблю и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.