На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Дальнейшее развитие электроники и необходимость уменьшения размеров устройств до наномасштабов с использованием новой элементной базы. Квазиодномерные системы, нанотрубки на основе углерода. Электронный спектр и проводимость двустеночной нанотрубки.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 07.03.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


17
Содержание

Введение
Глава 1. Электронный спектр двустеночной углеродной нанотрубки
Глава 2. Проводимость двустеночной углеродной нанотрубки
Выводы
Список использованных источников
Приложение
Введение

Современная металло-оксидно-полупроводниковая микроэлектроника фактически достигла пределов быстродействия и степени интеграции. Дальнейшее развитие электроники связывают с уменьшением размеров устройств до наномасштабов с использованием новой элементной базы. Поэтому на сегодняшний день большой интерес вызывают так называемые квазиодномерные системы, примерами которых являются полимеры, нанотрубки на основе углерода, кремния и других материалов. В настоящее время нанотрубки уже выпускаются серийно многими фирмами, например, SES Research, Carbon Solutions Inc., Helix Material Solutions в США.
Нанотрубки бывают одностеночными и многостеночными. Одностеночная нанотрубка представляет собой графитовую плоскость, различным образом свернутую в цилиндр. Она характеризуется так называемыми индексами хиральности, и в зависимости от этих индексов может быть как металлом, так и полупроводником. Диаметр такой трубки порядка нанометров, а длина достигает микрометров, поэтому она занимает промежуточное положение между молекулой и кристаллом, что проявляется в наличии специфических свойств, в частности, зонной структуры в спектре электронов. Одностеночные нанотрубки уже достаточно хорошо изучены.
Многостеночная нанотрубка представляет собой либо несколько одностеночных трубок, вложенных друг в друга, либо графитовую плоскость, свернутую в несколько слоев в виде свитка, либо цилиндрическую структуру, составленную из небольших графитовых фрагментов и напоминающую папье-маше. В отличие от одностеночных, свойства многостеночных нанотрубок изучены намного хуже.
Целью данной работы является исследование спектров элементарных возбуждений двупериодических одномерных систем, примером которых являются двуслойные углеродные нанотрубки. Для этого с помощью метода сильной связи рассматривается спектр упрощенной модели нанотрубки в виде двух параллельных цепочек атомов, определяется уровень Ферми такой системы и исследуется ее проводимость. Все вычисления производились в программе, написанной на языке C++ в среде Microsoft Visual Studio 2008 с использованием библиотек Win32.
Глава 1. Электронный спектр двустеночной углеродной нанотрубки
Для исследования электронного спектра двустеночной углеродной нанотрубки воспользуемся моделью, в которой нанотрубка представляет собой две параллельные регулярные цепочки атомов с разными периодами. При этом, однако, в силу периодичности системы будем пользоваться результатами теоремы Блоха, поэтому необходимо потребовать, чтобы отношение периодов цепочек выражалось рациональной дробью.
Сначала рассмотрим систему, представляющую собой линейную цепочку атомов, расстояние между которыми а, и определим энергетический спектр электрона в такой системе.
Будем пользоваться приближением сильной связи и искать волновую функцию электрона в виде:
,в (1.1)
где - волновая функция электрона на изолированном n-ом атоме цепочки. Для удобства обозначим . Далее, минимизируя функционал энергии при условии нормировки волновых функций :
(1.2)
получим:
(1.3)
Выделим в потенциальной энергии слагаемые с и воспользуемся тем, что решения для электронов на изолированном атоме известны:
, (1.4)
где - обменный интеграл. Далее учтем, что в методе сильной связи он считается ненулевым только для ближайших соседей, и получим:
(1.5)
(1.6)
В силу трансляционной симметрии волновую функцию можно выбрать так, чтобы она удовлетворяла теореме Блоха, тогда коэффициенты будут иметь вид . Подставим их в (1.6) и получим выражение для энергетического спектра электрона:
(1.7)
где - энергия основного состояния электрона в изолированном атоме, к - волновой вектор.
Теперь рассмотрим две такие цепочки атомов, расположенные на некотором расстоянии d друг от друга. Расстояние между атомами в первой цепочке по-прежнему a, во второй - b. Если пренебречь возможностью перескока электрона с одной цепочки на другую, то собственные волновые функции электронов будут иметь следующий вид:
- описывает движение электрона с энергией по первой цепочке;
- описывает движение электрона с энергией по второй цепочке;
Теперь учтём, что при таком расположении цепочек появляется вероятность перескока электрона с одной из них на другую. Тогда в гамильтониане системы появятся недиагональные вклады:
, (1.8)
где - матричные элементы оператора взаимодействия, ответственного за перескок электронов. Считая его достаточно малым, вычислим поправки к энергии, воспользовавшись теорией возмущения для вырожденного уровня. Волновую функцию системы представим в виде линейной комбинации . Тогда соответствующее секулярное уравнение примет вид:
(1.9)
Отсюда получим энергию нашей системы:
(1.10)
Уровень Ферми в такой системе расщепляется. Это следует из того, что значения интегралов перекрытия г1 и г2 принимают разные значения, вследствие этого происходит перекрытие зон. Формула для энергии уровня Ферми упростится, если мы будем считать, что на нем выполняется условие:
(1.11)
и примет вид:
(1.12)
Осталось вычислить . Очевидно, что вероятность перескока электрона с одной цепочки на другую определяется расстоянием между атомами этих цепочек и быстро убывает с его ростом. Поэтому смоделируем в таком виде:
(1.13)
Значение этого выражения определяется численно в программе. Импульсы k и p на уровне Ферми определяются из условия равенства энергий (1.11). Значения интегралов перекрытия брались из [1], [2].
Глава 2. Проводимость двустеночной углеродной нанотрубки

Как было показано в [3], в упрощенной модели одностеночной трубки, представляющей собой линейную цепочку атомов, сила протекающего через нее тока определяется выражением:
, (2.1)
где U- напряжение, приложенное к концам трубки, L - ее длина, ф - время релаксации электронов, n - их концентрация. После простых преобразований получим:
(2.2)
Так как мы рассматриваем идеальную систему, то рассеяние электронов при движении может происходить только на контактах. Тогда время релаксации электронов можно определить так:
(2.3)
Тогда формула приобретет простой вид:
(2.4)
Видно, что и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.