Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Структурная схема транзисторного высокочастотного тракта. Сумматор мощности и его схема. Датчик фазы входного сопротивления согласующей цепи на выходе сумматора мощности. Виды и характеристика аппаратов для УВЧ-терапии и их основные выходные параметры.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 12.01.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
"Требования к ВЧ тракту и его структура. Измеритель мощности для аппаратов УВЧ-терапии"

МИНСК, 2008
Требования к ВЧ тракту и его структура
ВЧ тракт должен обеспечивать требуемую мощность (Рвых80100 Вт, 20%) в активной части комплексного сопротивления во всем диапазоне изменения ее реактивной составляющей, требуемую частоту f=27,120,6% МГц, автоматическую настройку тракта на согласованный режим, плавную регулировку мощности от нулевой до максимальной величины, подавление нежелательных излучений в эфир (2-я и 3-я гармоники).
Структурная схема содержит: 2-х канальный генератор с внешним возбуждением, задающий генератор (ЗГ), 2 канала усиления мощности (УМ1 с фазоинверсным звеном на входе и УМ2 с фазоинверсным звеном на выходе), фильтры гармоник Ф1 и Ф2, синфазный сумматор (С), конструктивно объединенный с фильтром-трансформат ром и датчиком отраженной волны (Д), согласующее устройство (СУ), неоднородную длинную линию (ДЛ), на конце которой включена комплексная изменяющаяся нагрузка, образованная электродами (Э) и пациентом (П).
Рисунок 1 - Структурная схема транзисторного ВЧ тракта
Сигналы, вырабатываемые ЗГ, поступают на 2 канала усиления УМ1 и УМ2, после чего происходит сложение их мощностей в сумматоре С. С выхода сумматора ВЧ сигнал поступает на СУ, которое с помощью двухпроводной линии соединено с электродами.
Двухканальный генератор с внешним возбуждением предназначен для генерации с помощью ЗГ сигнала с частотой 27,12 МГц и его усиления по мощности двумя усилителями и последующей фильтрацией в канале фильтрами Ф1 и Ф2.
Управляемый кварц ЗГ выполнен на транзисторе VT2, в коллекторную цепь которого включен колебательный контур, образованный катушкой L и емкостью делителя.
Рисунок 2 - Схема ВЧ части задающего генератора
В цепи ОС генератора включен кварцевый резонатор, обеспечивающий требуемую стабильность f. Данный генератор управляется по постоянному току транзистором VT1, благодаря которому обеспечивается плавная (ступенчатая) регулировка выходного напряжения и, следовательно, мощности в нагрузке. ЗГ включает предварительный усилитель мощности на VT3 и VT4 и имеет два симметричных выхода. Он генерирует сигнал f=27,12 МГц, мощностью 8 Вт на нагрузке 50 Ом по каждому выходу.
Каждый из усилителей УМ1 и УМ2 представляет собой двухтактную схему с общим эмиттером, имеющую следующие параметры: Uкол.max=100 В, Iкол.max=15 А, мощность рассеивания на коллекторе Р=70 Вт, предельная частота усиления f1=150 МГц, расчетное значение Rвн.транз=6 Ом.
Исходя из максимального значения мощности, рассеиваемой на коллекторе транзистора (Р=70 Вт) и задавая границы возможного изменения сопротивления нагрузки величиной коэффициента отражения (Г)=0,15 (КСВН=1,35), определяются параметры усилителей мощности.
Эксперимент - при Ек=27 В и при условии, что СУ трансформирует нагрузку в плоскость усилителя с КСВН не более 1,35, выходная мощность каскада составляет 56 Вт. При этом коэффициент усиления по мощности УМ1 и УМ2 равен 7, а КПД каскадов, определенный как отношение мощности в нагрузке к мощности, потребляемой от источника коллективного питания, составил 0,55. Для обеспечения требований по помехозащитности используют ФНЧ с fср=30 МГц, при этом подавление 2-й и 3-й гармоник рабочей частоты составляет соответственно 54 и 72 дБ.

Сумматор мощности

Использован синфазный сумматор мощности, выполненный по мостовой схеме на трансформаторных длинных линиях (ТДЛ). Схема имеет 2 входа (3 и 4), к которым подключаются УМ1 и УМ2 и два выхода (2 - подключается нагрузка трансформатора через СУ, 1 - подключено балластное сопротивление). Балластное сопротивление обеспечивает взаимную электрическую развязку, а согласование сумматора по входу (УМ1 и УМ2) контролируется по величине КСВН. Если комплексная нагрузка ВЧ тракта согласована с выходом 2, т.е. значение ее активной части близко к 50 Ом, а значение реактивной части стремиться к нулю, то мощность обоих каналов усиления суммируется в нагрузке. Если нагрузка не согласована, отраженная от нее волна поглощается в балластном сопротивлении, что определяется выполнением условия противофазности. Это условие обеспечивается за счет включения фазоинвертора 3 - четверть волновых отрезков кабелей, для того, чтобы на рабочей частоте фазовый сдвиг был кратен 900. В результате для падающих волн создаются условия синфазности по обоим каналам, а для отражающих - противофазности.

СУ обеспечивает автоматизацию процесса согласования ВЧ тракта с нагрузкой, исключая необходимость вмешательства в этот процесс при замене электродов, регулировке зазоров между электродом и пациентом и т.д.

Так как изменение активной составляющей невелико, то целесообразно построение СУ в соответствии с компенсационной схемой, в которой в зависимости от величины реактивной составляющей нагрузки перестраивается только один реактивный элемент. Наиболее высокой надежностью и быстродействием обладают СУ на основе индуктивных реактивных элементов с электрическим управлением - ферровариометров, представляющих собой магнитоуправляемые индуктивности. Принцип действия таких устройств основан на зависимости магнитной проницаемости феррита от напряжения постоянного магнитного поля. С ростом подмагничивающего поля магнитная проницаемость феррита уменьшается, что приводит к изменению индуктивности, обеспечивающей резонанс в выходной цепи при изменении емкости нагрузки. Подмагничивающее поле создается током в специальной управляющей обмотке. СУ содержит также 2 последовательно и симметрично включенных с комплексным сопротивлением нагрузки конденсатора (10-12 пФ) для уменьшения динамического диапазона изменения реактивной составляющей нагрузки. При мощности в активной части нагрузки (Р80 Вт) используемые в СУ конденсаторы должны обладать большим рабочим напряжением (3-4 кВ) и большой реактивной мощностью (5-7 кВт).

Рисунок 3 - Сумматор мощности
В качестве датчика рассматриваемой схемы САР может использоваться датчик фазы входного сопротивления согласующей цепи, установленный на выходе сумматора мощности. Сигнал рассогласования с фазового датчика поступает на усилитель постоянного тока, выход которого подключен к управляющей обмотке ферровариометра (ФВ), обеспечивая в ней необходимое подмагничивающее поле и соответствующее изменение компенсирующей индуктивности СУ. Такое изменение происходит до тех пор, пока реактивная составляющая не станет равной нулю, ImZн=0. САР работает в колебательном режиме около точки согласования с нагрузкой, т.к. после того как сигнал с фазового датчика становится равным нулю, перестраиваемый элемент СУ переходит в исходное состояние и цикл повторяется. Однако время переходного процесса мало и составляет =0,1 с., т.е. в ВЧ тракте аппарата образуется режим, близкий к режиму бегущей волны, необходим для дозировки мощности, подводимой к пациенту.

Общие сведения

Аппараты для УВЧ-терапии, в настоящее время наиболее распространенный вид высокочастотной физиотерапевтической аппаратуры, представляют собой генераторы электрических колебаний ультравысокочастотно о диапазона.

Все выпускаемые промышленностью аппараты для УВЧ-терапии работают на выделенной частоте 40.68 МГц с допуском ±2%.

В зависимости от целевого назначения применяются аппараты с различной величиной выходной мощности.

Переносные аппараты в портативном исполнении рассчитаны для помощи у постели больного на дому и в больничной палате. Они имеют небольшие габариты и вес и переносятся одним человеком. Выходная мощность портативных аппаратов невелика - 30-40 Вт, и с их помощью может производиться воздействие только на небольшие участки тела.

Переносные аппараты, рассчитанные на переноску и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.