Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Ультразвук. Общие сведения. Фронт волны. Фазовая скорость. Отношение давления к колебательной скорости. Коэфициент стоячей волны. Коэффициент бегущей волны. Энергия упругих колебаний. Плотность потенциальной энергии. Общая плотность энергии бегущей волны.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 12.11.2008. Год: 2008. Уникальность по antiplagiat.ru: < 30%

Описание (план):


БЕЛОРУССКИЙ ГОСУДАРСТЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра электронной техники и технологии
РЕФЕРАТ
на тему:
«Ультразвук. Энергия упругих колебаний»
Минск, 2008

1. Ультразвук. Общие сведения

Ультразвук (УЗ) представляет собой упругие колебания и волны в диапазоне от 104 до 109 Гц.

Распространение мощного УЗ в физической среде (газе, жидкости или твердом теле) вызывает ряд специфических эффектов, которые широко используют в различных областях науки и техники.

Уравнение, которое связывает изменения параметров колебательного движения во времени с его изменением в пространстве, называют волновым уравнением.

, (1)

где ?- смещение упругих колебаний;

t - время;

x - продольная координата.

Решением уравнения является функция

(2)

где ?m - максимальное смещение частицы от положения равновесия (амплитуда колебаний);

?=2?f - циклическая частота;

k=2?/? - волновое число;

?=C/f - длина волны.

Величина ?=kx - называется фазой волны (волнового процесса).

Геометрическое место точек равной фазы в бегущей волне называют фронтом волны.

Скорость распространения фронта волны называется фазовой скоростью.

(3)

В зависимости от формы фронта волны подразделяют на плоские, цилиндрические и сферические.

В плоской бегущей волне амплитуда не меняется при распространении.

В цилиндрической и сферической волне место изменения амплитуды по линии распространения.

В цилиндрической волне амплитуда уменьшается пропорционально ~ R1/2 и в сферической ~ R-1. Величина

(4)

называется колебательной скоростью. Величина

(5)

характеризует упругую деформацию среды в направлении x.

Тогда из теории упругости можно ввести понятия давления и напряжения

(6)

Для плоской бегущей волны (гармонической) давление и колебательная скорость синфазны, но опережают смещение на 90?.

Скорость распространения огибающей волны (с переменной амплитудой и фазой) называется групповой скоростью

, (7)

при k=const и ?=const U=C=CЗ.

Рисунок 1-Изменение одиночного импульса при распространении в среде.

Отношение давления к колебательной скорости называют удельным (волновым) акустическим сопротивлением.

(8)

где ? - плотность среды;

С - скорость звука в этой среде.

Волновое сопротивление представляет собой активное сопротивление, на котором рассеиваются удельная акустическая мощность, т.е. энергия, уносимая волной за 1 с, через 1 м. В безграничных газовых и жидких средах возможно существование только продольных волн.

В отличии от жидкостей и газов, которые обладают только упругостью объема, твердые тела имеют упругость объема и формы.

Напряженное состояние твердого тела описывается тензором напряжений, который содержит нормальные и касательные (сдвиговые) составляющие напряжений. Наличие сдвиговых напряжений, обуславливает распространение в твердых телах, кроме продольных, также сдвиговых волн.

Рисунок 2 - Образование продольных (а) и сдвиговых (б) волн в твердых телах.

При нормальном падении бегущей волны на плоскую поверхность возникает интерференционная картина, так называется стоячая волна. Стоячая волна есть суперпозиция двух бегущих волн:

(9)

Стоячая волна характеризуется наличием плоскостей узлов и пучностей волны, фиксированных в пространстве параллельно отраженной границе.

При этом максимальная амплитуда соответствует амплитуде деформации и наоборот. Узлы (нулевые значения) деформации совпадают с пучностями (максимальными значениями) смещения.

Образования стоячих волн возможно на любой ч и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.