На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Разработка и расчет оконечного каскада усилителя мощности. Выбор типа транзистора. Расчет масштабирующего усилителя с инвертированием сигнала. Разработка блока питания. Расчет предоконечного и промежуточного каскадов. Выбор операционного усилителя.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 14.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


План

Введение
1. Разработка структуры усилителя
2. Разработка и расчет оконечного каскада усилителя мощности
2.1. Выбор первой пары транзисторов
2.1.1. Построение нагрузочной прямой в режиме В
2.1.2. Построение мощностных характеристик
2.1.3. Построение нагрузочной прямой в режиме АВ
2.2. Выбор второй пары транзисторов
2.2.1. Построение нагрузочной прямой в режиме В
2.2.2. Построение нагрузочной прямой в режиме АВ
2.3. Расчет напряжения смещения
2.4. Нелинейные искажения
3. Разработка и расчет предоконечного каскада
3.1. Выбор типа транзистора
3.2. Построение нагрузочных прямых
4. Разработка и расчет промежуточного каскада
4.1. Выбор операционного усилителя
4.2. Расчет масштабирующего усилителя с инвертированием сигнала
5. Разработка и расчет входного каскада
5.1. Выбор операционного усилителя
5.2. Расчет масштабирующего усилителя без инвертирования сигнала
6. Разработка и расчет блока питания
7. Разработка и описание печатной платы.
Заключение
Список использованной литературы
Введение

Несмотря на быстрое развитие усилительной техники, бестрансформаторные усилители мощности по-прежнему играют важную роль.
Такие усилители могут быть легко выполнены по интегральной технологии. Именно поэтому современные БМУ представляют собой компактные и экономичные устройства. Кроме того, отсутствие частотно-зависимых элементов в цепях связи позволяет вводить глубокие отрицательные обратные связи не только по переменному, но и по постоянному току, что существенно улучшает характеристики усилителей.
Основной функцией усилителей мощности (УМ) является обеспечение в нагрузке заданного значения мощности; усиление по напряжению является второстепенным фактором, в результате УМ являются основными потребителями энергии источников питания. Для обеспечения высокого КПД мощные выходные каскады работают в режиме класса В или АВ. Схемы строят двухтактными на транзисторах различного типа проводимости (комплементарных), включенных по схеме с ОК или с ОЭ.
Исходные данные:
- мощность, отдаваемая в нагрузку ;
- сопротивление нагрузки ;
- внутреннее сопротивление источника сигнала ;
- диапазон усиливаемых частот ;
- коэффициент частотных искажений ;
- коэффициент гармоник ;
1 Разработка структуры усилителя

Усиление - это процесс увеличения электрических сигналов колебаний с сохранением их частотного спектра и фазовых соотношений. В настоящее время усилители электрических сигналов применяются практически в любых электронных устройствах, таких как: устройства воспроизведения и записи информации, устройства автоматики, измерительные устройства, вычислительная техника и т.д.
Р1 Р2
Ро

Рисунок 1 - Общая схема усилителя.
Процесс усиления электрического сигнала происходит за счет мощности, потребляемой от источника питания. Часть мощности Ро в усилителе преобразуется в мощность Р2, т.е. в мощность, выделяемую в нагрузке. Для преобразования мощности Ро в мощность Р2 затрачивается мощность Р1, т.е. мощность источника сигнала. Таким образом, усиление - процесс увеличения мощности источника сигнала.
В этом данном курсовом проекте проектируется устройство, структурная схема которого изображена на Рисунке 2.

Евх
Рисунок 2 - Структурная схема проектируемого усилителя.
2. Разработка и расчет оконечного каскада усилителя мощности

Выберем в качестве оконечного каскада двухтактный, бестрансформаторный, каскад на составных биполярных транзисторах, включенных по схеме с общим коллектором. Это позволит нам осуществить непосредственную связь с нагрузкой, а значит, обойтись без громоздких трансформаторов и разделительных конденсаторов. А т.к. последние являются частотно-зависимыми элементами, то их отсутствие существенно расширит полосу пропускания усилителя. Отсутствие частотно-зависимых элементов позволяет вводить глубокие обратные связи по постоянному току, что улучшает характеристики усилителя.
Выберем схему построения оконечного каскада.
Для повышения КПД транзисторы оконечного каскада используют в режиме класса В. Тогда оконечный каскад будет состоять из двух симметричных плеч, каждое из которых будет работать параллельно и в противофазе друг другу на общую нагрузку (Рисунок 3).
Однако при этом существенно увеличиваются нелинейные искажения. Поэтому выходные каскады обычно используют в режиме АВ (при этом в принципиальную схему добавляется цепь смещения), обеспечивая высокий КПД и малые нелинейные искажения. Такие схемы выполняют на комплиментарных транзисторах.
При значительной мощности выходного сигнала (более 5 Вт) или при слишком большом коэффициенте гармоник может возникнуть ситуация, когда для предоконечного каскада тоже может потребоваться режим АВ. В этом случае оконечный каскад выполняют на составных транзисторах.
2.1 Выбор 1ой пары транзисторов

Первая пара транзисторов составляет свой каскад. Он состоит из двух комплементарных транзисторов V1 и V2, работающих на общую нагрузку . По своим усилительным свойствам транзисторы V1 и V2 должны быть идентичны. В схеме (Рисунок 4) транзисторы V1 и V2 включены с ОК. Напряжения источников питания равны между собой . При положительных входных сигналах транзистор V1 работает в активном режиме и усиливает входной сигнал, а транзистор V2 заперт. При отрицательных входных напряжениях - наоборот. Таким образом, транзисторы работают в активном режиме попеременно, каждый в течение одного полупериода входного напряжения. При оба транзистора заперты.
а) рассчитаем амплитуду выходного питания:
U = (2Pн Rн )1/2;
==15,49 В;
б) выберем напряжение питания:
Eп = Uнм + Uост= 15,49 + 6 = 21,49 , следовательно Eп = 21 В
Uост= 6 В;
в) рассчитываем мощность, рассеиваемую на одном транзисторе:
= 6,2 Вт
г) ток нагрузки:
А, то есть Ikm = 1,94 A;
д) исходя из рассчитанных данных выбираем пару транзисторов:
это транзисторы КТ-818В и КТ-819В.
КТ-818В - это кремневые мезаэпитаксиально - планарные p-n-p-транзисторы предназначены для применения в ключевых и линейных схемах. Корпус пластмассовый с гибкими выводами или металлический, масса не более 15 г.
КТ-819В - это кремневые мезаэпитаксиально - планарные n-p-n-транзисторы предназначены для применения в ключевых и линейных схемах, узлах, блоках аппаратуры. Корпус пластмассовый с гибкими выводами, масса не более 2,5 г. или металлостеклянный, масса не более 15 г.
2.1.1 Построение нагрузочной прямой в режиме В
Будем рассчитывать транзисторы в режиме класса В. Этот режим соответствует условию, когда начальное смещение между базами и эмиттерами транзисторов отсутствует и при отсутствии входного сигнала ток коллекторов близок к нулю. Анализ энергетических характеристик усилителя проводят для одного плеча, считая, что параметры второго плеча идентичны.
Строим нагрузочную прямую:
1) Iк = 0, Uкэ = Еп = 21 В
2) Uкэ = 0,
Рисунок 5 - Выходные характеристики транзистора КТ-819В.
Нагрузочная прямая на выходных характеристиках каждого из транзисторов проходит через точку В(1) с координатами
;
и точку 4: ; = 6 В;
На входной характеристике транзистора положение рабочей точки определяется в соответствии с положением рабочей точки на выходных характеристиках.
, ,
, ,
, .
Рисунок 6 - Входная характеристика транзистора КТ-819В.
Из входной характеристики находим:
; .
2.1.2 Построение мощностных характеристик
На Рисунке 7 представлены мощностные характеристики усилителя в режиме В. Это зависимости мощностей нагрузки, потребляемой от источника питания и рассеиваемой на коллекторах транзисторов, от амплитуды напряжения на нагрузке.
Рисунок 7 - Мощностные характеристики усилителя.
2.1.3 Построение нагрузочной прямой в режиме АВ
В режиме класса АВ за счет введения небольшого смещения и задания также небольшого тока покоя транзисторов амплитудная характеристика изменяется и становится более линейной, переходные искажения существенно уменьшаются. Если задать ток покоя равным максимальному току в нагрузке, то получим режим класса А. Однако переходные искажения в достаточной степени уменьшаются, даже если ток покоя составляет незначительную часть максимального тока в нагрузке.
Итак, для первой пары транзисторов:
Ik0= 0,1Iнm = 0,1*1,94 = 0,194 A
Теперь построим нагрузочную прямую в режиме АВ. Она проходит через точку АВ с координатами , и точку 3 с координатами
=19,5-14,49 = 5,01 В,
=1,94+0,194 = 2,134 А
Рисунок 8 - Выходные характеристики транзистора КТ-819В.
Теперь переносим точки на входную характеристику:
,
,
,
.
Для этих токов находим соответствующие напряжения Uбэ:
,
,,
.
Рисунок 9 - Входная характеристика транзистора КТ-819В.
Найдем амплитудные значения :
Откуда получаем: ;
=0,35+14,49=14,84В.
Рассчитав максимальные значения входного тока и напряжения , определяют мощность, потребляемую входной цепью усилителя от предыдущего каскада и входное сопротивление:
,
.
2.2 Выбор 2ой пары транзисторов

Для второй пары транзисторов составного каскада входные параметры первого являются выходными, то есть для выбора транзисторов используем следующие данные:
Eп = Uнм + Uост= 14,84 + 6 = 20,84 , следовательно Eп = 21 В
Uост= 6 В;
= 0,15 Вт
, то есть Ikm = 50 мA;
Исходя из рассчитанных данных выбираем пару транзисторов:
это КТ-629А и КТ-630А.
КТ-629А - это кремниевые эпитаксиально-планарные p-n-p-транзисторы предназначены для использования в быстродействующих импульсных и других неремонтируемых гибридных схемах, микромодулях, узлах и блоках, имеющих герметичную защиту от действия солнечного света, влаги и так далее, для аппаратуры широкого применения. Оформление бес корпусное, на диэлектрической подложке. Масса не более 0,02 г.
КТ-630А - это кремневые планарные n-p-n-транзисторы используются в быстродействующих импульсных и других схемах. Корпус металлический, герметичный, с гибкими выводами, масса не более 2 г.
2.2.1 Построение нагрузочной прямой в режиме В
Строим нагрузочную прямую:
1) Iк = 0, Uкэ = Еп = 21 В
2) Uкэ = 0, 21 / 297 = 70 мА;
Выходные характеристики:
Нагрузочная прямая на выходных характеристиках каждого из транзисторов проходит через точку В(1) с координатами
; =21В
и точку 4: ; = 6 В;
Рисунок 10 - Выходные характеристики транзистора КТ-630А.
На входной характеристике транзистора положение рабочей точки определяется в соответствии с положением рабочей точки на выходных характеристиках.
, ,
, ,
, .
Рисунок 11 - Входная характеристика транзистора КТ-630А.
2.2.2 Построение нагрузочной прямой в режиме АВ
Теперь построим нагрузочную прямую в режиме АВ для второй пары транзисторов. Она проходит через точку с координатами , и точку с координатами
= 19 - 14,84 = 4,16В,
= 50*10-3+10*10-3 = 60мА
, так как ;
Затем переносим точки на входную характеристику:
,
,
,
.
Рисунок 12 - Выходные характеристики транзистора КТ-630А.
Для этих токов находим соответствующие напряжения Uбэ:
,
,
,
.
Рисунок 13 - Входная характеристика транзистора КТ-630А.
Найдем амплитудные значения:
Откуда получаем: ;
=0,13+14,84 = 14,97В.
Рассчитав максимальные значения входного тока и напряжения , определяют мощность, потребляемую входной цепью усилителя от предыдущего каскада и входное сопротивление:
,
,
2.3 Расчет напряжения смещения

Для режима АВ посчитаем напряжение смещения:
;
;
Исходя из полученного напряжения смещения выбираем диоды, которые компенсируют его. Выберем три универсальных диода КД519А.
2.4 Нелинейные искажения

Транзисторы в УМ работают при значительных амплитудах сигнала, поэтому усилителям мощности присущи значительные нелинейные искажения. В режиме класса В усилители являются экономичными, но обладают повышенными искажениями, которые определяются, во-первых, существенной нелинейностью входных характеристик транзисторов, во-вторых, неидентичностью как входных, так и выходных характеристик и, в-третьих, нелинейной зависимостью тока коллектора от тока базы.
В схеме с ОК уменьшение нелинейных искажений достигается за счет 100%-ной отрицательной обратной связи по напряжению. Построения амплитудной характеристики каскада ОК, работающего в режиме В соответствует уравнениям:
Rc=0 ; Rн =8Ом
;
Для токов коллектора найдем Uн:
;
;
;
.
Для токов базы и соответствующим им найдем Евх:
, ,
, ,
, ,
, .
;
;
;
.
Построение амплитудной характеристики для режима АВ:
Эта характеристика более линейна вблизи начала координат по сравнению с режимом В.
; и
Для токов коллектора найдем Uн:
;
;
;
.
Для токов базы и соответствующим им найдем Евх при
:
, ,
, ,
, ,
, .
;
;
;
.
Теперь посчитаем коэффициент нелинейных искажений по третьей гармонике в режиме В:
.
Теперь посчитаем коэффициент нелинейных искажений по третьей гармонике в режиме АВ:
.
Рисунок 14 - Амплитудная характеристика оконечного каскада.
3. Разработка и расчет предоконечного каскада

При необходимости получения больших выходных токов существенно возрастает ток, потребляемый б и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.